	Advanced SQL Server Programming

[image: ]

Prepared by Randy Fadler
August 2025


Table of Contents
Chapter 1: Introduction to SQL Server	6
1.1 Overview of SQL Server	6
1.2 SQL Server Architecture	6
1.3 Setting Up Your Environment	7
1.4 Creating Your First Database	7
1.5 Basic T-SQL Syntax	8
1.6 Basic Data Types	9
1.7 Constraints and Relationships	9
1.8 Basic Querying with SELECT	10
1.9 Error Handling Basics	11
1.10 Best Practices for Beginners	11
1.11 Advanced: Exploring System Views	12
1.12 Exercises	12
1.13 Conclusion	12
Chapter 2: Basic SQL Queries	13
2.1 Introduction to CRUD Operations	13
2.2 INSERT: Creating Data	14
2.4 UPDATE: Modifying Data	17
2.5 DELETE: Removing Data	18
2.6 Aggregation and Grouping	18
2.7 Handling NULLs	19
2.8 Best Practices	20
2.9 Advanced: Common Table Expressions (CTEs)	21
2.10 Exercises	21
2.11 Conclusion	21
Chapter 3: Joins and Subqueries	22
3.1 Introduction to Joins and Subqueries	22
Recap of CompanyDB Schema	22
3.2 Understanding Joins	23
3.2.1 INNER JOIN	23
3.2.2 LEFT JOIN (LEFT OUTER JOIN)	23
3.2.3 RIGHT JOIN (RIGHT OUTER JOIN)	24
3.2.4 FULL OUTER JOIN	24
3.2.5 Multiple Joins	25
3.2.6 CROSS JOIN	25
3.3 Subqueries	26
3.3.1 Scalar Subqueries	26
3.3.2 Correlated Subqueries	26
3.3.3 Subqueries in SELECT	27
3.3.4 IN vs EXISTS	27
3.4 Performance Considerations	28
3.5 Best Practices	28
3.6 Advanced: Self Joins	28
3.7 Exercises	29
3.8 Conclusion	29
Chapter 4: Stored Procedures	30
4.1 Introduction to Stored Procedures	30
4.2 Creating Basic Stored Procedures	30
4.3 Procedures with Input Parameters	31
4.4 Procedures with Output Parameters	33
4.5 Returning Result Sets and Multiple Results	34
4.6 Error Handling in Stored Procedures	34
4.7 Modifying and Dropping Procedures	36
4.9 Debugging and Profiling	37
4.10 Security and Permissions	37
4.11 Best Practices	37
4.12 Advanced: Nested Procedures and Recursion	38
4.13 Exercises	38
4.14 Conclusion	39
Chapter 5: User-Defined Functions	40
5.1 Introduction to User-Defined Functions	40
5.2 Scalar Functions	41
5.4 Multi-Statement Table-Valued Functions	44
5.5 Using UDFs in Other Constructs	47
5.10 Exercises	49
5.11 Conclusion	50
Chapter 6: Triggers	51
6.1 Introduction to Triggers	51
6.2 DML Triggers: AFTER Triggers	52
6.4 DDL Triggers	55
6.7 Debugging Triggers	59
6.9 Exercises	59
6.10 Conclusion	60
Chapter 7: Indexes and Performance Optimization	61
7.1 Introduction to Indexes and Performance	61
7.2 Index Types in SQL Server	61
7.2.1 Clustered Index	61
7.2.2 Nonclustered Index	62
7.2.3 Included Columns	62
7.2.4 Filtered Index	63
7.2.5 Composite Index	63
7.3 Analyzing Query Performance	63
7.4 Query Optimization Techniques	64
7.4.1 Write Sargable Queries	64
7.4.2 Avoid SELECT *	64
7.4.3 Use Joins Efficiently	64
7.5 Advanced Example: Index for Complex Reporting	65
7.6 Index Maintenance	66
7.7 Advanced Example: Partitioned Index	67
7.8 Best Practices	67
7.9 Exercises	67
7.10 Conclusion	68
Chapter 8: Transactions and Error Handling	69
8.1 Introduction to Transactions and Error Handling	69
8.2 Transaction Basics	69
8.3 Savepoints	71
8.5 Deadlocks and Handling	73
8.6 Advanced Example: Complex Transaction with Validation	74
8.7 Performance Considerations	76
8.8 Best Practices	76
8.9 Exercises	76
8.10 Conclusion	77
Chapter 9: Security in SQL Server	78
9.1 Introduction to SQL Server Security	78
9.2 Authentication	78
9.3 Authorization	79
9.4 Row-Level Security (RLS)	80
9.5 Encryption	81
9.6 Auditing	83
9.7 Advanced Example: Dynamic Access Control	84
9.8 Performance Considerations	85
9.9 Best Practices	85
9.10 Exercises	86
9.11 Conclusion	86
Chapter 10: Best Practices and Advanced Topics	87
10.1 Introduction to Best Practices and Advanced Topics	87
10.2 Best Practices for T-SQL Programming	87
10.3 Common Table Expressions (CTEs)	88
10.4 Window Functions	90
10.9 Best Practices for Advanced Features	95
10.10 Exercises	95
10.11 Conclusion	95
Chapter 11: Capstone Project - Building a Comprehensive Sales Dashboard Backend with AdventureWorks2022	96
11.1 Project Overview	96
11.2 Setting Up the Environment	97
11.3 Basic SQL Queries: Exploring and Manipulating Sales Data	98
11.5 Stored Procedures: Web Interface Endpoints	101
11.6 User-Defined Functions: Custom Calculations	103
11.7 Triggers: Data Integrity and Auditing	104
11.8 Indexes and Performance Optimization	105
11.11 Advanced Topics: Sophisticated Analytics	107
11.12 Conclusion and Web Integration	108



[bookmark: _Toc207197754]Chapter 1: Introduction to SQL Server
[bookmark: _Toc207197755]1.1 Overview of SQL Server
Microsoft SQL Server is a robust relational database management system (RDBMS) designed to handle a wide range of applications, from small-scale projects to enterprise-level systems. It supports structured data storage, querying, and management using Transact-SQL (T-SQL), Microsoft’s extension of the SQL standard. T-SQL adds procedural programming capabilities like variables, loops, and error handling, making it powerful for both simple queries and complex logic.
Key Features
· Scalability: Supports databases from a few megabytes to terabytes, with editions like Express (free, 10GB limit) to Enterprise (high availability, advanced analytics).
· Performance: Features like in-memory tables, columnstore indexes, and query optimization.
· Security: Offers encryption, row-level security, dynamic data masking, and auditing.
· Integration: Seamlessly works with .NET, Azure, Power BI, and SSIS (SQL Server Integration Services).
· Deployment Options: On-premises, cloud (Azure SQL Database), or hybrid.
SQL Server runs on Windows and Linux, with container support via Docker. Editions include:
· Express: Free, limited to 10GB databases, ideal for learning.
· Standard: Balanced features for small to medium businesses.
· Enterprise: Advanced features like Always On, data warehousing.
· Developer: Free, full-featured for non-production use.
[bookmark: _Toc207197756]1.2 SQL Server Architecture
Understanding SQL Server’s architecture helps in writing efficient code:
· Storage Engine: Manages data files (.mdf for data, .ldf for logs).
· Relational Engine: Processes T-SQL queries, optimizes execution plans.
· Memory Management: Uses buffer pools for caching data, reducing disk I/O.
· Transaction Log: Ensures data integrity via ACID properties (Atomicity, Consistency, Isolation, Durability).
Key databases:
· master: Stores system configuration.
· msdb: Manages jobs, backups.
· tempdb: Temporary storage for queries, rebuilt on server restart.
[bookmark: _Toc207197757]1.3 Setting Up Your Environment
To start, install SQL Server and a client tool:
1. Download SQL Server: Get the free Express or Developer edition from Microsoft’s website.
2. Install SSMS: SQL Server Management Studio, available from Microsoft, is the primary GUI for querying.
3. Alternative: Use Azure Data Studio for a lightweight, cross-platform tool.
4. Sample Database: Download AdventureWorks from Microsoft’s GitHub. Restore it using:
RESTORE DATABASE AdventureWorks
FROM DISK = 'C:\Path\To\AdventureWorks.bak'
WITH MOVE 'AdventureWorks_Data' TO 'C:\SQLData\AdventureWorks.mdf',
MOVE 'AdventureWorks_Log' TO 'C:\SQLData\AdventureWorks.ldf';

Connecting to SQL Server
· Windows Authentication: Uses your Windows credentials (recommended for local setups).
· SQL Server Authentication: Username/password, e.g., sa account (enable during installation).
In SSMS, connect to localhost or your server name (e.g., SERVERNAME\SQLEXPRESS).
[bookmark: _Toc207197758]1.4 Creating Your First Database
Let’s create a database and a table to store employee data.
-- Create a new database
USE master;
GO

CREATE DATABASE CompanyDB;
GO

-- Switch to the new database
USE CompanyDB;
GO

-- Create a table with constraints
CREATE TABLE Employees (
    EmployeeID INT PRIMARY KEY IDENTITY(1,1),
    FirstName NVARCHAR(50) NOT NULL,
    LastName NVARCHAR(50) NOT NULL,
    Email NVARCHAR(100) UNIQUE,
    HireDate DATE NOT NULL,
    Salary DECIMAL(10,2) CHECK (Salary >= 0),
    DepartmentID INT,
    CONSTRAINT CHK_Email CHECK (Email LIKE '%@%.%')
);
GO
Explanation:
· CREATE DATABASE: Initializes a new database.
· IDENTITY(1,1): Auto-increments EmployeeID starting from 1.
· NOT NULL: Ensures fields aren’t empty.
· UNIQUE: Prevents duplicate emails.
· CHECK: Enforces salary >= 0 and valid email format.
· GO: Batch separator for SSMS.
Run this in a new query window in SSMS. Verify creation:
SELECT name FROM sys.databases WHERE name = 'CompanyDB';
SELECT * FROM sys.tables WHERE name = 'Employees';
[bookmark: _Toc207197759]1.5 Basic T-SQL Syntax
T-SQL is case-insensitive, but consistent casing improves readability. Key conventions:
· Use UPPERCASE for SQL keywords (optional but common).
· Use camelCase or PascalCase for object names.
· End statements with ; (optional in older versions, required in newer contexts).
Inserting Data
Add sample employee records:
INSERT INTO Employees (FirstName, LastName, Email, HireDate, Salary, DepartmentID)
VALUES ('John', 'Doe', 'john.doe@company.com', '2023-01-15', 75000.00, 1),
       ('Jane', 'Smith', 'jane.smith@company.com', '2022-06-20', 82000.00, 2),
       ('Bob', 'Johnson', 'bob.johnson@company.com', '2024-03-10', 65000.00, NULL);
Explanation:
· INSERT INTO: Specifies table and columns.
· VALUES: Provides data in matching order.
· NULL for DepartmentID if unassigned.
Verify:
SELECT * FROM Employees;
Output:
	EmployeeID
	FirstName
	LastName
	Email
	HireDate
	Salary
	DepartmentID

	1
	John
	Doe
	john.doe@company.com
	2023-01-15
	75000.00
	1

	2
	Jane
	Smith
	jane.smith@company.com
	2022-06-20
	82000.00
	2

	3
	Bob
	Johnson
	bob.johnson@company.com
	2024-03-10
	65000.00
	NULL


[bookmark: _Toc207197760]1.6 Basic Data Types
SQL Server supports various data types:
· Numeric: INT (whole numbers), DECIMAL(p,s) (precision, scale, e.g., 10,2 for 12345678.12), FLOAT.
· String: NVARCHAR(n) (Unicode, variable length), CHAR(n) (fixed length).
· Date/Time: DATE (YYYY-MM-DD), DATETIME2 (higher precision), TIME.
· Binary: VARBINARY for files/images.
· Special: UNIQUEIDENTIFIER (GUIDs), XML.
Example: Add a binary column for employee photos.
ALTER TABLE Employees
ADD Photo VARBINARY(MAX) NULL;
Explanation: VARBINARY(MAX) allows large binary data (e.g., images). NULL permits empty values.
[bookmark: _Toc207197761]1.7 Constraints and Relationships
Constraints enforce data integrity:
· PRIMARY KEY: Uniquely identifies rows, enforces NOT NULL.
· FOREIGN KEY: Links tables.
· CHECK: Validates data.
· UNIQUE: Prevents duplicates.
· DEFAULT: Sets default values.
Example: Create a Departments table and link it.
CREATE TABLE Departments (
    DepartmentID INT PRIMARY KEY IDENTITY(1,1),
    DepartmentName NVARCHAR(50) NOT NULL,
    Location NVARCHAR(100) DEFAULT 'Unknown'
);

-- Add foreign key to Employees
ALTER TABLE Employees
ADD CONSTRAINT FK_Employee_Dept
FOREIGN KEY (DepartmentID) REFERENCES Departments(DepartmentID);

-- Insert departments
INSERT INTO Departments (DepartmentName, Location)
VALUES ('HR', 'New York'), ('IT', 'San Francisco');
Explanation:
· FOREIGN KEY: Ensures DepartmentID in Employees matches a valid DepartmentID.
· DEFAULT: Sets Location to 'Unknown' if unspecified.
Verify relationships:
SELECT e.FirstName, e.LastName, d.DepartmentName
FROM Employees e
LEFT JOIN Departments d ON e.DepartmentID = d.DepartmentID;
Output:
	FirstName
	LastName
	DepartmentName

	John
	Doe
	HR

	Jane
	Smith
	IT

	Bob
	Johnson
	NULL


[bookmark: _Toc207197762]1.8 Basic Querying with SELECT
The SELECT statement retrieves data. Key clauses:
· WHERE: Filters rows.
· ORDER BY: Sorts results.
· TOP: Limits rows.
Example: Query employees with high salaries.
SELECT TOP 2 FirstName, LastName, Salary
FROM Employees
WHERE Salary > 70000
ORDER BY Salary DESC;
Explanation:
· TOP 2: Returns only the top 2 rows.
· WHERE: Filters salaries above 70,000.
· ORDER BY DESC: Sorts from highest to lowest.
Output:
	FirstName
	LastName
	Salary

	Jane
	Smith
	82000.00

	John
	Doe
	75000.00


[bookmark: _Toc207197763]1.9 Error Handling Basics
Use TRY...CATCH to handle errors gracefully.
Example: Handle duplicate email error.
BEGIN TRY
    INSERT INTO Employees (FirstName, LastName, Email, HireDate, Salary, DepartmentID)
    VALUES ('Alice', 'Brown', 'john.doe@company.com', '2024-05-01', 60000.00, 1);
END TRY
BEGIN CATCH
    SELECT 
        ERROR_MESSAGE() AS ErrorMessage,
        ERROR_LINE() AS ErrorLine;
END CATCH;
Explanation:
· Attempts to insert a duplicate email, violating the UNIQUE constraint.
· CATCH returns the error: "Violation of UNIQUE KEY constraint..."
[bookmark: _Toc207197764]1.10 Best Practices for Beginners
· Use Meaningful Names: e.g., Employees not Table1.
· Comment Code: Add -- or /* */ for clarity.
· Backup Before Changes: Use BACKUP DATABASE CompanyDB TO DISK = 'C:\Backups\CompanyDB.bak';.
· **Avoid SELECT *** in production; specify columns.
· Test on Small Data: Use a dev database before production.
[bookmark: _Toc207197765]1.11 Advanced: Exploring System Views
System views like sys.tables, sys.columns provide metadata.
Example: List all tables and their columns.
SELECT 
    t.name AS TableName,
    c.name AS ColumnName,
    ty.name AS DataType
FROM sys.tables t
JOIN sys.columns c ON t.object_id = c.object_id
JOIN sys.types ty ON c.system_type_id = ty.system_type_id
WHERE t.name IN ('Employees', 'Departments');
Explanation: Queries system catalog to show schema details.
[bookmark: _Toc207197766]1.12 Exercises
1. Create a database SalesDB with a table Products (ProductID, Name, Price, Stock).
2. Insert 5 products, then query products with stock > 10.
3. Add a foreign key to a new Categories table and join them.
4. Write a query to find the top 3 most expensive products.
[bookmark: _Toc207197767]1.13 Conclusion
This chapter introduced SQL Server’s core concepts, setup, and basic T-SQL programming. You’ve learned to create databases, tables, constraints, and perform basic queries with error handling. The examples are foundational, preparing you for deeper topics like stored procedures and indexing.


[bookmark: _Toc207197768]Chapter 2: Basic SQL Queries
[bookmark: _Toc207197769]2.1 Introduction to CRUD Operations
In SQL Server, CRUD operations (Create, Read, Update, Delete) form the backbone of data manipulation using Transact-SQL (T-SQL). This chapter explores these operations in depth, focusing on the INSERT, SELECT, UPDATE, and DELETE statements. We’ll use the CompanyDB database created in Chapter 1, which contains the Employees and Departments tables, and add a new Projects table for more complex examples.
Recap of CompanyDB Schema
· Employees: EmployeeID (PK), FirstName, LastName, Email, HireDate, Salary, DepartmentID (FK), Photo.
· Departments: DepartmentID (PK), DepartmentName, Location.
Let’s add a Projects table to track employee assignments:
USE CompanyDB;
GO

CREATE TABLE Projects (
    ProjectID INT PRIMARY KEY IDENTITY(1,1),
    ProjectName NVARCHAR(100) NOT NULL,
    StartDate DATE NOT NULL,
    EndDate DATE,
    Budget DECIMAL(12,2) CHECK (Budget >= 0),
    DepartmentID INT,
    CONSTRAINT FK_Project_Dept FOREIGN KEY (DepartmentID) REFERENCES Departments(DepartmentID),
    CONSTRAINT CHK_Dates CHECK (EndDate IS NULL OR EndDate >= StartDate)
);
GO
Explanation:
· IDENTITY(1,1): Auto-generates ProjectID.
· CHECK (Budget >= 0): Ensures non-negative budgets.
· CHECK (EndDate IS NULL OR EndDate >= StartDate): Validates date logic.
· FOREIGN KEY: Links to Departments.
Insert sample data:
INSERT INTO Projects (ProjectName, StartDate, EndDate, Budget, DepartmentID)
VALUES ('ERP Implementation', '2023-03-01', '2024-02-28', 150000.00, 2),
       ('Recruitment Portal', '2024-01-15', NULL, 50000.00, 1),
       ('Data Migration', '2023-09-01', '2024-06-30', 80000.00, 2);
[bookmark: _Toc207197770]2.2 INSERT: Creating Data
The INSERT statement adds rows to a table. It supports single-row, multi-row, and data-from-query insertions.
Single-Row Insert
Example: Add a new employee.
INSERT INTO Employees (FirstName, LastName, Email, HireDate, Salary, DepartmentID)
VALUES ('Alice', 'Brown', 'alice.brown@company.com', '2024-05-01', 60000.00, 1);
Explanation:
· Columns are specified explicitly.
· Values match column order and data types.
· EmployeeID is auto-generated by IDENTITY.
Multi-Row Insert
Insert multiple employees at once:
INSERT INTO Employees (FirstName, LastName, Email, HireDate, Salary, DepartmentID)
VALUES ('Tom', 'Wilson', 'tom.wilson@company.com', '2023-11-10', 72000.00, 2),
       ('Sarah', 'Davis', 'sarah.davis@company.com', '2024-02-20', 68000.00, 1);
Explanation:
· Multiple VALUES tuples separated by commas.
· Efficient for bulk inserts.
Insert from Query
Copy projects with high budgets to a new table:
CREATE TABLE MajorProjects (
    ProjectID INT PRIMARY KEY,
    ProjectName NVARCHAR(100),
    Budget DECIMAL(12,2)
);

INSERT INTO MajorProjects (ProjectID, ProjectName, Budget)
SELECT ProjectID, ProjectName, Budget
FROM Projects
WHERE Budget > 75000;
Explanation:
· Creates MajorProjects table.
· Inserts projects with budgets over $75,000.
· SELECT acts as the data source.
Verify:
SELECT * FROM MajorProjects;
Output:
	ProjectID
	ProjectName
	Budget

	1
	ERP Implementation
	150000.00

	3
	Data Migration
	80000.00


2.3 SELECT: Reading Data
The SELECT statement retrieves data, with clauses for filtering, sorting, and limiting.
Basic SELECT
Retrieve all employee data:
SELECT EmployeeID, FirstName, LastName, Email, HireDate
FROM Employees;
Explanation:
· Explicit column names improve performance and clarity over SELECT *.
· Returns all rows from Employees.
Filtering with WHERE
Filter employees by department and salary:
SELECT FirstName, LastName, Salary
FROM Employees
WHERE DepartmentID = 1 AND Salary >= 65000;
Explanation:
· WHERE uses AND to combine conditions.
· Returns employees in HR (DepartmentID=1) with salaries ≥ $65,000.
Output (assuming prior inserts):
	FirstName
	LastName
	Salary

	John
	Doe
	75000.00


Sorting with ORDER BY
Sort employees by hire date, newest first:
SELECT FirstName, LastName, HireDate
FROM Employees
ORDER BY HireDate DESC;
Explanation:
· DESC: Descending order (newest to oldest).
· Default is ASC (ascending).
Limiting with TOP
Get the top 3 highest-paid employees:
SELECT TOP 3 FirstName, LastName, Salary
FROM Employees
ORDER BY Salary DESC;
Explanation:
· TOP 3: Limits to 3 rows.
· Sorted by salary, highest first.
Output:
	FirstName
	LastName
	Salary

	Jane
	Smith
	82000.00

	John
	Doe
	75000.00

	Tom
	Wilson
	72000.00


Using Expressions
Calculate years of service:
SELECT FirstName, LastName, DATEDIFF(YEAR, HireDate, GETDATE()) AS YearsOfService
FROM Employees
WHERE DATEDIFF(YEAR, HireDate, GETDATE()) > 1;
Explanation:
· DATEDIFF(YEAR, HireDate, GETDATE()): Computes years between hire date and now.
· AS: Aliases the calculated column.
· Filters for employees with >1 year of service.
[bookmark: _Toc207197771]2.4 UPDATE: Modifying Data
The UPDATE statement modifies existing rows. Always use WHERE to avoid updating all rows.
Example: Increase salaries in IT (DepartmentID=2) by 10%:
UPDATE Employees
SET Salary = Salary * 1.10
WHERE DepartmentID = 2;
Explanation:
· SET: Updates Salary with a 10% increase.
· WHERE: Targets IT employees.
· Verify with SELECT * FROM Employees.
Update with Join
Update project budgets based on department:
UPDATE p
SET Budget = Budget + 10000
FROM Projects p
JOIN Departments d ON p.DepartmentID = d.DepartmentID
WHERE d.DepartmentName = 'HR';
Explanation:
· Joins Projects and Departments.
· Increases budgets for HR projects by $10,000.
· FROM and JOIN allow multi-table updates.
[bookmark: _Toc207197772]2.5 DELETE: Removing Data
The DELETE statement removes rows. Use WHERE to avoid deleting all data.
Example: Delete employees hired before 2023:
DELETE FROM Employees
WHERE HireDate < '2023-01-01';
Explanation:
· Removes employees like Jane Smith (hired 2022-06-20).
· Verify with SELECT * FROM Employees.
Delete with Join
Delete completed projects in IT:
DELETE p
FROM Projects p
JOIN Departments d ON p.DepartmentID = d.DepartmentID
WHERE d.DepartmentName = 'IT' AND p.EndDate IS NOT NULL;
Explanation:
· Deletes IT projects with an EndDate (e.g., Data Migration).
· Uses join to filter by department.
[bookmark: _Toc207197773]2.6 Aggregation and Grouping
Use aggregate functions (COUNT, SUM, AVG, MIN, MAX) with GROUP BY to summarize data.
Basic Aggregation
Count employees per department:
SELECT d.DepartmentName, COUNT(e.EmployeeID) AS EmployeeCount
FROM Departments d
LEFT JOIN Employees e ON d.DepartmentID = e.DepartmentID
GROUP BY d.DepartmentName;
Explanation:
· COUNT(e.EmployeeID): Counts non-NULL employee records.
· LEFT JOIN: Includes departments with zero employees.
· GROUP BY: Groups results by department name.
Output (assuming current data):
	DepartmentName
	EmployeeCount

	HR
	2

	IT
	2


Filtering Groups with HAVING
List departments with total salaries > $100,000:
SELECT d.DepartmentName, SUM(e.Salary) AS TotalSalary
FROM Departments d
JOIN Employees e ON d.DepartmentID = e.DepartmentID
GROUP BY d.DepartmentName
HAVING SUM(e.Salary) > 100000;
Explanation:
· HAVING: Filters grouped results (like WHERE for aggregates).
· Only shows departments with high total salaries.
[bookmark: _Toc207197774]2.7 Handling NULLs
NULL represents missing data. Use IS NULL or IS NOT NULL.
Example: Find employees without a department:
SELECT FirstName, LastName
FROM Employees
WHERE DepartmentID IS NULL;
Explanation:
· Returns Bob Johnson (DepartmentID=NULL).
Use COALESCE to handle NULLs:
SELECT ProjectName, COALESCE(EndDate, 'Ongoing') AS Status
FROM Projects;
Output:
	ProjectName
	Status

	ERP Implementation
	2024-02-28

	Recruitment Portal
	Ongoing

	Data Migration
	2024-06-30


[bookmark: _Toc207197775]2.8 Best Practices
· Specify Columns: Avoid SELECT * in production.
· Use WHERE: Prevent unintended updates/deletes.
· Test Queries: Run SELECT before UPDATE/DELETE.
· Indexes: Add indexes on frequently filtered columns (e.g., DepartmentID).
· Comments: Use -- or /* */ for clarity.
· Batch Size: For large INSERT/UPDATE, use batches to avoid locking.
Example: Batch insert:
-- Insert 1000 employees in batches
SET NOCOUNT ON;
DECLARE @i INT = 1;
WHILE @i <= 1000
BEGIN
    INSERT INTO Employees (FirstName, LastName, Email, HireDate, Salary, DepartmentID)
    VALUES ('User' + CAST(@i AS NVARCHAR(10)), 'Test', 'user' + CAST(@i AS NVARCHAR(10)) + '@test.com', '2024-01-01', 50000.00, 1);
    SET @i = @i + 1;
END;
[bookmark: _Toc207197776]2.9 Advanced: Common Table Expressions (CTEs)
CTEs simplify complex queries.
Example: Find employees with above-average salaries:
WITH AvgSalary AS (
    SELECT AVG(Salary) AS AvgSalary
    FROM Employees
)
SELECT FirstName, LastName, Salary
FROM Employees, AvgSalary
WHERE Salary > AvgSalary.AvgSalary;
Explanation:
· WITH: Defines a temporary result set.
· Compares each salary to the average.
[bookmark: _Toc207197777]2.10 Exercises
1. Insert 3 new projects into Projects, including one with a NULL EndDate.
2. Write a SELECT query to find employees hired in 2024, sorted by LastName.
3. Update all projects with budgets < $60,000 to add $5,000.
4. Delete employees with salaries < $65,000 in HR.
5. Write a query to count projects per department, including departments with zero projects.
[bookmark: _Toc207197778]2.11 Conclusion
This chapter covered essential T-SQL queries for manipulating and retrieving data. You’ve learned to insert, select, update, and delete data, handle aggregations, and work with NULLs. These skills are foundational for more advanced topics like joins and stored procedures in later chapters.


[bookmark: _Toc207197779]Chapter 3: Joins and Subqueries
[bookmark: _Toc207197780]3.1 Introduction to Joins and Subqueries
Joins and subqueries are essential for working with relational data in SQL Server, allowing you to combine data from multiple tables or perform nested queries. Joins link tables based on related columns, while subqueries enable queries within queries for complex filtering or calculations. This chapter covers the types of joins, subquery patterns, and their use cases, with a focus on Transact-SQL (T-SQL) syntax and performance optimization.
[bookmark: _Toc207197781]Recap of CompanyDB Schema
From Chapters 1 and 2:
· Employees: EmployeeID (PK), FirstName, LastName, Email, HireDate, Salary, DepartmentID (FK), Photo.
· Departments: DepartmentID (PK), DepartmentName, Location.
· Projects: ProjectID (PK), ProjectName, StartDate, EndDate, Budget, DepartmentID (FK).
· MajorProjects: ProjectID (PK), ProjectName, Budget.
Let’s add a new table to track employee-project assignments:
USE CompanyDB;
GO

CREATE TABLE EmployeeProjects (
    EmployeeID INT,
    ProjectID INT,
    Role NVARCHAR(50) NOT NULL,
    AssignmentDate DATE NOT NULL,
    PRIMARY KEY (EmployeeID, ProjectID),
    FOREIGN KEY (EmployeeID) REFERENCES Employees(EmployeeID),
    FOREIGN KEY (ProjectID) REFERENCES Projects(ProjectID)
);

INSERT INTO EmployeeProjects (EmployeeID, ProjectID, Role, AssignmentDate)
VALUES (1, 1, 'Lead Developer', '2023-03-05'),
       (2, 1, 'Project Manager', '2023-03-01'),
       (3, 2, 'HR Coordinator', '2024-01-20'),
       (4, 3, 'Data Analyst', '2023-09-10');
Explanation:
· EmployeeProjects: Links employees to projects with roles and dates.
· Composite PRIMARY KEY on EmployeeID and ProjectID.
· FOREIGN KEY constraints ensure referential integrity.
[bookmark: _Toc207197782]3.2 Understanding Joins
Joins combine rows from two or more tables based on a condition, typically matching keys. SQL Server supports several join types: INNER JOIN, LEFT JOIN, RIGHT JOIN, FULL OUTER JOIN, and CROSS JOIN.
[bookmark: _Toc207197783]3.2.1 INNER JOIN
Returns only matching rows from both tables.
Example: List employees and their departments.
SELECT e.FirstName, e.LastName, d.DepartmentName
FROM Employees e
INNER JOIN Departments d ON e.DepartmentID = d.DepartmentID;
Explanation:
· INNER JOIN: Matches DepartmentID between tables.
· Excludes employees with NULL DepartmentID (e.g., Bob Johnson).
· ON: Specifies the join condition.
Output (based on Chapter 2 data):
	FirstName
	LastName
	DepartmentName

	John
	Doe
	HR

	Jane
	Smith
	IT

	Alice
	Brown
	HR

	Sarah
	Davis
	HR

	Tom
	Wilson
	IT


[bookmark: _Toc207197784]3.2.2 LEFT JOIN (LEFT OUTER JOIN)
Returns all rows from the left table and matching rows from the right. Non-matching right-table rows return NULL.
Example: Include employees without departments.
SELECT e.FirstName, e.LastName, d.DepartmentName
FROM Employees e
LEFT JOIN Departments d ON e.DepartmentID = d.DepartmentID;
Explanation:
· LEFT JOIN: Includes all employees, even those with NULL DepartmentID.
· Bob Johnson appears with NULL for DepartmentName.
Output:
	FirstName
	LastName
	DepartmentName

	John
	Doe
	HR

	Jane
	Smith
	IT

	Alice
	Brown
	HR

	Sarah
	Davis
	HR

	Tom
	Wilson
	IT

	Bob
	Johnson
	NULL


[bookmark: _Toc207197785]3.2.3 RIGHT JOIN (RIGHT OUTER JOIN)
Opposite of LEFT JOIN, returns all rows from the right table.
Example: List all departments, even those without employees.
SELECT d.DepartmentName, COUNT(e.EmployeeID) AS EmployeeCount
FROM Departments d
RIGHT JOIN Employees e ON d.DepartmentID = e.DepartmentID
GROUP BY d.DepartmentName;
Explanation:
· RIGHT JOIN: Prioritizes Employees, so unused departments may not appear unless flipped.
· Use LEFT JOIN from Departments for empty departments (see Section 3.2.5).
[bookmark: _Toc207197786]3.2.4 FULL OUTER JOIN
Returns all rows from both tables, with NULL for non-matches.
Example: All employees and departments, including non-matches.
SELECT e.FirstName, e.LastName, d.DepartmentName
FROM Employees e
FULL OUTER JOIN Departments d ON e.DepartmentID = d.DepartmentID;
Explanation:
· Shows employees without departments and departments without employees.
· Useful for auditing data mismatches.
[bookmark: _Toc207197787]3.2.5 Multiple Joins
Combine multiple tables.
Example: Employees, their projects, and departments.
SELECT e.FirstName, e.LastName, p.ProjectName, d.DepartmentName
FROM Employees e
INNER JOIN EmployeeProjects ep ON e.EmployeeID = ep.EmployeeID
INNER JOIN Projects p ON ep.ProjectID = p.ProjectID
LEFT JOIN Departments d ON p.DepartmentID = d.DepartmentID;
Explanation:
· Joins Employees to EmployeeProjects, then to Projects, and finally to Departments.
· LEFT JOIN on Departments ensures projects without departments are included.
· Returns employees’ project roles and department names.
Output:
	FirstName
	LastName
	ProjectName
	DepartmentName

	John
	Doe
	ERP Implementation
	IT

	Jane
	Smith
	ERP Implementation
	IT

	Bob
	Johnson
	Recruitment Portal
	HR

	Tom
	Wilson
	Data Migration
	IT


[bookmark: _Toc207197788]3.2.6 CROSS JOIN
Produces a Cartesian product (all row combinations).
Example: Pair every employee with every project (use cautiously).
SELECT e.FirstName, p.ProjectName
FROM Employees e
CROSS JOIN Projects p
WHERE e.EmployeeID = 1; -- Limit for practicality
Explanation:
· Generates all combinations, so 5 employees × 3 projects = 15 rows unless filtered.
· Rarely used without WHERE.
[bookmark: _Toc207197789]3.3 Subqueries
Subqueries are nested queries within a main query, used in SELECT, WHERE, or FROM.
[bookmark: _Toc207197790]3.3.1 Scalar Subqueries
Return a single value.
Example: Employees with above-average salaries.
SELECT FirstName, LastName, Salary
FROM Employees
WHERE Salary > (SELECT AVG(Salary) FROM Employees);
Explanation:
· Subquery (SELECT AVG(Salary)...) computes the average salary.
· Main query filters employees with higher salaries.
· Subquery runs once.
Output (assuming average salary ~$70,167):
	FirstName
	LastName
	Salary

	John
	Doe
	75000.00

	Jane
	Smith
	82000.00

	Tom
	Wilson
	72000.00


[bookmark: _Toc207197791]3.3.2 Correlated Subqueries
Execute for each row of the main query.
Example: Employees assigned to projects with budgets > $100,000.
SELECT e.FirstName, e.LastName
FROM Employees e
WHERE EXISTS (
    SELECT 1
    FROM EmployeeProjects ep
    JOIN Projects p ON ep.ProjectID = p.ProjectID
    WHERE ep.EmployeeID = e.EmployeeID AND p.Budget > 100000
);
Explanation:
· EXISTS: Checks if the subquery returns rows.
· Correlates via ep.EmployeeID = e.EmployeeID.
· Returns John and Jane (on ERP Implementation, budget $150,000).
[bookmark: _Toc207197792]3.3.3 Subqueries in SELECT
Compute values per row.
Example: Show each project’s budget relative to the average.
SELECT ProjectName, Budget,
       Budget - (SELECT AVG(Budget) FROM Projects) AS BudgetVsAvg
FROM Projects;
Output (average budget ~$93,333):
	ProjectName
	Budget
	BudgetVsAvg

	ERP Implementation
	150000SNS0.00
	56666.67

	Recruitment Portal
	50000.00
	-43333.33

	Data Migration
	80000.00
	-11333.33


[bookmark: _Toc207197793]3.3.4 IN vs EXISTS
IN and EXISTS are common in subqueries.
Example: Use IN for project IDs.
SELECT FirstName, LastName
FROM Employees
WHERE EmployeeID IN (
    SELECT EmployeeID FROM EmployeeProjects WHERE ProjectID = 1
);
Explanation:
· IN: Checks if EmployeeID is in the subquery’s result.
· EXISTS is often faster for correlated subqueries.
[bookmark: _Toc207197794]3.4 Performance Considerations
· Joins vs Subqueries: Joins are often faster than correlated subqueries due to query optimizer efficiency.
· Indexes: Create indexes on join/subquery columns (e.g., DepartmentID, EmployeeID).
· Execution Plans: Use SET STATISTICS IO ON and SSMS’s “Show Actual Execution Plan” to analyze performance.
· Avoid Overuse of Subqueries: Rewrite as joins where possible.
Example: Index for joins.
CREATE NONCLUSTERED INDEX IX_EmployeeProjects_EmployeeID
ON EmployeeProjects(EmployeeID);

CREATE NONCLUSTERED INDEX IX_EmployeeProjects_ProjectID
ON EmployeeProjects(ProjectID);
Explanation:
· Speeds up joins on EmployeeProjects.
[bookmark: _Toc207197795]3.5 Best Practices
· Use Explicit Joins: Prefer INNER JOIN over implicit joins (e.g., FROM A, B WHERE A.id = B.id).
· Choose the Right Join: Use INNER JOIN for matches, LEFT JOIN for optional matches.
· Simplify Subqueries: Avoid deeply nested subqueries; use CTEs or joins.
· Test Performance: Run queries on large datasets to identify bottlenecks.
· Use Aliases: Shorten table names (e.g., Employees e) for readability.
[bookmark: _Toc207197796]3.6 Advanced: Self Joins
Join a table to itself.
Example: Find employees hired after their department’s first hire.
SELECT e1.FirstName, e1.LastName, e1.HireDate
FROM Employees e1
JOIN Employees e2 ON e1.DepartmentID = e2.DepartmentID
WHERE e1.HireDate > e2.HireDate
AND e2.HireDate = (
    SELECT MIN(HireDate)
    FROM Employees e3
    WHERE e3.DepartmentID = e1.DepartmentID
);
Explanation:
· Self-join compares employees within the same department.
· Subquery finds the earliest hire date per department.
[bookmark: _Toc207197797]3.7 Exercises
1. Write an INNER JOIN query to list employees and their project roles.
2. Use a LEFT JOIN to find projects with no assigned employees.
3. Write a subquery to find departments with no employees.
4. Create a correlated subquery to list employees on high-budget projects (> $80,000).
5. Optimize a join query with an index and check the execution plan.
[bookmark: _Toc207197798]3.8 Conclusion
Joins and subqueries are powerful tools for combining and filtering data. Joins offer flexibility in merging tables, while subqueries enable complex logic within queries. Understanding their syntax, performance implications, and best practices is crucial for efficient SQL Server programming.


[bookmark: _Toc207197799]Chapter 4: Stored Procedures
[bookmark: _Toc207197800]4.1 Introduction to Stored Procedures
Stored procedures are precompiled collections of one or more T-SQL statements stored in the database, allowing for reusable, modular, and secure code execution in SQL Server. They enhance performance by reducing network traffic (only parameters are sent, not full queries), improve security by encapsulating logic and controlling access, and promote maintainability through centralized code. Stored procedures can accept input parameters, return output parameters, return result sets, and handle errors.
This chapter explores creating, executing, modifying, and optimizing stored procedures, with advanced topics like dynamic SQL and debugging. We’ll use the CompanyDB database from previous chapters, assuming the schema with Employees, Departments, Projects, and EmployeeProjects tables.
Benefits of Stored Procedures
· Performance: Compiled once, execution plans are cached.
· Security: Grant EXECUTE permissions without exposing table access.
· Modularity: Encapsulate business logic, reducing code duplication.
· Error Handling: Built-in TRY/CATCH for robust operations.
· Transaction Management: Control commits and rollbacks.
When to Use
· For complex, multi-statement operations (e.g., insert with validation).
· Reusable queries with parameters to prevent SQL injection.
· Batch operations that need to be atomic.
[bookmark: _Toc207197801]4.2 Creating Basic Stored Procedures
Use CREATE PROCEDURE (or CREATE PROC) to define a procedure. It can include any valid T-SQL.
Parameterless Procedure
Example: A simple procedure to list all employees.
USE CompanyDB;
GO

CREATE PROCEDURE ListAllEmployees
AS
BEGIN
    SELECT EmployeeID, FirstName, LastName, HireDate, Salary
    FROM Employees
    ORDER BY LastName;
END;
GO
Explanation:
· AS BEGIN ... END: Defines the body.
· No parameters; just retrieves and sorts employees.
· GO: Separates batches in SSMS.
Execute it:
EXEC ListAllEmployees;
Output (sample data):
	EmployeeID
	FirstName
	LastName
	HireDate
	Salary

	4
	Alice
	Brown
	2024-05-01
	60000.00

	1
	John
	Doe
	2023-01-15
	75000.00

	3
	Bob
	Johnson
	2024-03-10
	65000.00

	2
	Jane
	Smith
	2022-06-20
	82000.00

	5
	Sarah
	Davis
	2024-02-20
	68000.00

	6
	Tom
	Wilson
	2023-11-10
	72000.00


[bookmark: _Toc207197802]4.3 Procedures with Input Parameters
Parameters are prefixed with @ and typed. They can be input (default) or output.
Single Input Parameter
Example: Get employee details by ID.
CREATE PROCEDURE GetEmployeeByID
    @EmployeeID INT
AS
BEGIN
    SELECT FirstName, LastName, Email, HireDate, Salary, DepartmentID
    FROM Employees
    WHERE EmployeeID = @EmployeeID;
END;
GO
Explanation:
· @EmployeeID INT: Input parameter.
· Used in WHERE to filter.
Execute:
EXEC GetEmployeeByID @EmployeeID = 1;
Output:
	FirstName
	LastName
	Email
	HireDate
	Salary
	DepartmentID

	John
	Doe
	john.doe@company.com
	2023-01-15
	75000.00
	1


Multiple Input Parameters with Defaults
Example: Search employees by department and minimum salary.
CREATE PROCEDURE SearchEmployees
    @DepartmentID INT = NULL,
    @MinSalary DECIMAL(10,2) = 0
AS
BEGIN
    SELECT e.FirstName, e.LastName, d.DepartmentName, e.Salary
    FROM Employees e
    LEFT JOIN Departments d ON e.DepartmentID = d.DepartmentID
    WHERE (@DepartmentID IS NULL OR e.DepartmentID = @DepartmentID)
      AND e.Salary >= @MinSalary
    ORDER BY e.Salary DESC;
END;
GO
Explanation:
· Defaults: @DepartmentID = NULL (all departments), @MinSalary = 0 (no minimum).
· WHERE handles optional parameters with OR and IS NULL.
· Joins for department name.
Execute examples:
· All employees: EXEC SearchEmployees;
· IT employees with salary >= $70,000: EXEC SearchEmployees @DepartmentID = 2, @MinSalary = 70000;
[bookmark: _Toc207197803]4.4 Procedures with Output Parameters
Output parameters return values to the caller.
Example: Calculate average salary and return it.
CREATE PROCEDURE GetAverageSalary
    @AvgSalary DECIMAL(10,2) OUTPUT
AS
BEGIN
    SELECT @AvgSalary = AVG(Salary)
    FROM Employees;
END;
GO
Explanation:
· @AvgSalary OUTPUT: Returns the computed average.
Execute and capture:
DECLARE @Average DECIMAL(10,2);
EXEC GetAverageSalary @AvgSalary = @Average OUTPUT;
PRINT 'Average Salary: ' + CAST(@Average AS NVARCHAR(20));
Output: Average Salary: 70333.33 (based on sample data).
Combining Input and Output
Example: Get employee count by department.
CREATE PROCEDURE GetEmployeeCountByDept
    @DepartmentID INT,
    @EmployeeCount INT OUTPUT
AS
BEGIN
    SELECT @EmployeeCount = COUNT(*)
    FROM Employees
    WHERE DepartmentID = @DepartmentID;
END;
GO
Execute:
DECLARE @Count INT;
EXEC GetEmployeeCountByDept @DepartmentID = 1, @EmployeeCount = @Count OUTPUT;
PRINT 'HR Employees: ' + CAST(@Count AS NVARCHAR(10));
[bookmark: _Toc207197804]4.5 Returning Result Sets and Multiple Results
Procedures can return multiple result sets.
Example: Get employees and departments.
CREATE PROCEDURE GetCompanyData
AS
BEGIN
    SELECT * FROM Employees ORDER BY LastName;
    SELECT * FROM Departments ORDER BY DepartmentName;
END;
GO
Explanation:
· Two SELECT statements return separate result sets.
Execute: 
EXEC GetCompanyData; – SSMS shows two grids.
[bookmark: _Toc207197805]4.6 Error Handling in Stored Procedures
Use TRY...CATCH for robust error management.
Example: Insert employee with error handling.
CREATE PROCEDURE InsertEmployee
    @FirstName NVARCHAR(50),
    @LastName NVARCHAR(50),
    @Email NVARCHAR(100),
    @HireDate DATE,
    @Salary DECIMAL(10,2),
    @DepartmentID INT
AS
BEGIN
    BEGIN TRY
        BEGIN TRANSACTION;
        
        INSERT INTO Employees (FirstName, LastName, Email, HireDate, Salary, DepartmentID)
        VALUES (@FirstName, @LastName, @Email, @HireDate, @Salary, @DepartmentID);
        
        COMMIT TRANSACTION;
    END TRY
    BEGIN CATCH
        IF @@TRANCOUNT > 0
            ROLLBACK TRANSACTION;
        
        SELECT 
            ERROR_NUMBER() AS ErrorNumber,
            ERROR_MESSAGE() AS ErrorMessage;
    END CATCH;
END;
GO
Explanation:
· BEGIN TRANSACTION: Starts a transaction.
· TRY: Attempts insert.
· CATCH: Rolls back on error (e.g., duplicate email) and returns error details.
· Prevents partial updates.
Execute (success):
EXEC InsertEmployee 'Michael', 'Scott', 'michael.scott@company.com', '2024-08-01', 90000.00, 1;
Execute (error, duplicate email):
EXEC InsertEmployee 'John', 'Doe', 'john.doe@company.com', '2023-01-15', 75000.00, 1;
Output on Error:
	ErrorNumber
	ErrorMessage

	2627
	Violation of UNIQUE KEY constraint...


[bookmark: _Toc207197806]4.7 Modifying and Dropping Procedures
Alter existing procedures with ALTER PROCEDURE.
Example: Add a column to ListAllEmployees.
ALTER PROCEDURE ListAllEmployees
AS
BEGIN
    SELECT EmployeeID, FirstName, LastName, HireDate, Salary, Email
    FROM Employees
    ORDER BY LastName;
END;
GO
Drop:
DROP PROCEDURE IF EXISTS ListAllEmployees;
Explanation:
· IF EXISTS: Prevents errors if not present.
4.8 Dynamic SQL in Procedures
Dynamic SQL builds and executes strings at runtime, useful for flexible queries.
Example: Dynamic search.
CREATE PROCEDURE DynamicEmployeeSearch
    @SearchColumn NVARCHAR(50),
    @SearchValue NVARCHAR(100)
AS
BEGIN
    DECLARE @SQL NVARCHAR(MAX);
    SET @SQL = N'SELECT * FROM Employees WHERE ' + QUOTENAME(@SearchColumn) + N' = @Value';
    
    EXEC sp_executesql @SQL, N'@Value NVARCHAR(100)', @Value = @SearchValue;
END;
GO
Explanation:
· Builds @SQL dynamically.
· QUOTENAME: Prevents SQL injection on column names.
· sp_executesql: Executes with parameters, safer than EXEC.
Execute:
EXEC DynamicEmployeeSearch @SearchColumn = 'LastName', @SearchValue = 'Doe';
[bookmark: _Toc207197807]4.9 Debugging and Profiling
· SSMS Debugger: Set breakpoints, step through code (View > SQL Server Object Explorer > Procedures > Right-click > Debug Procedure).
· PRINT: Insert for variable values.
· PROFILER: Use SQL Server Profiler to trace execution.
· Extended Events: For advanced monitoring.
Example: Add PRINT for debugging.
ALTER PROCEDURE InsertEmployee
    -- Parameters...
AS
BEGIN
    PRINT 'Starting Insert...';
    -- Rest of code
END;
[bookmark: _Toc207197808]4.10 Security and Permissions
Grant EXECUTE:
GRANT EXECUTE ON InsertEmployee TO SomeUser;
Explanation:
· Users can run the proc without table INSERT permissions.
[bookmark: _Toc207197809]4.11 Best Practices
· Parameterize Everything: Avoid hardcoding to prevent injection.
· Use SCHEMABINDING: For performance (CREATE PROC WITH SCHEMABINDING).
· Limit Dynamic SQL: Use only when necessary; prefer static.
· Document: Add comments with purpose, parameters, history.
· Version Control: Use ALTER, keep backups.
· Test Thoroughly: Cover edge cases, errors, performance.
· Naming: Prefix like usp_ (user stored proc) for clarity.
[bookmark: _Toc207197810]4.12 Advanced: Nested Procedures and Recursion
Procedures can call others.
Example: Nested call.
CREATE PROCEDURE MainProc
AS
BEGIN
    EXEC ListAllEmployees;
    EXEC GetAverageSalary @AvgSalary = @SomeVar OUTPUT; -- Declare @SomeVar first
END;
Recursion: Limited to 32 levels.
CREATE PROCEDURE RecursiveProc @Level INT
AS
BEGIN
    IF @Level > 0
    BEGIN
        PRINT @Level;
        EXEC RecursiveProc @Level - 1;
    END;
END;
GO

EXEC RecursiveProc 5;
[bookmark: _Toc207197811]4.13 Exercises
1. Create a procedure to update an employee's salary by ID, with input parameters for ID and new salary.
2. Build a procedure with output parameter to return the total budget for a department.
3. Implement error handling in a procedure that deletes an employee, ensuring no open projects.
4. Write a dynamic SQL procedure to filter projects by any column.
5. Debug a procedure using PRINT and test with invalid data.
[bookmark: _Toc207197812]4.14 Conclusion
Stored procedures are a cornerstone of SQL Server programming, offering efficiency, security, and modularity. You've learned to create, parameterize, handle errors, and optimize them. These concepts prepare you for functions and triggers in upcoming chapters.


[bookmark: _Toc207197813]Chapter 5: User-Defined Functions
[bookmark: _Toc207197814]5.1 Introduction to User-Defined Functions
User-defined functions (UDFs) in SQL Server allow you to encapsulate reusable T-SQL logic, returning scalar values or tables. Unlike stored procedures (Chapter 4), UDFs can be embedded in queries, computed columns, or constraints, making them versatile for calculations and data transformations. They are ideal for modularizing complex logic, improving readability, and ensuring consistency across queries.
Types of UDFs
· Scalar Functions: Return a single value (e.g., INT, DECIMAL).
· Inline Table-Valued Functions (TVFs): Return a table result set, defined by a single SELECT statement.
· Multi-Statement Table-Valued Functions (MSTVFs): Return a table, built using multiple T-SQL statements.
Benefits
· Reusability: Call functions in SELECT, WHERE, or JOIN clauses.
· Consistency: Centralize logic (e.g., formatting rules).
· Modularity: Simplify complex queries.
Limitations
· Cannot modify data (e.g., INSERT, UPDATE).
· Limited error handling compared to stored procedures.
· Performance overhead for scalar UDFs in large datasets (mitigated with SCHEMABINDING).
We’ll use the CompanyDB schema:
· Employees: EmployeeID (PK), FirstName, LastName, Email, HireDate, Salary, DepartmentID (FK), Photo.
· Departments: DepartmentID (PK), DepartmentName, Location.
· Projects: ProjectID (PK), ProjectName, StartDate, EndDate, Budget, DepartmentID (FK).
· EmployeeProjects: EmployeeID, ProjectID, Role, AssignmentDate.
[bookmark: _Toc207197815]5.2 Scalar Functions
Scalar functions return a single value and are used in SELECT, WHERE, or computed columns.
Basic Scalar Function
Example: Calculate years of service for an employee.
USE CompanyDB;
GO

CREATE FUNCTION dbo.CalculateYearsOfService (@HireDate DATE)
RETURNS INT
AS
BEGIN
    RETURN DATEDIFF(YEAR, @HireDate, GETDATE());
END;
GO
Explanation:
· @HireDate: Input parameter.
· RETURNS INT: Specifies return type.
· DATEDIFF: Computes years between hire date and current date.
Use in a query:
SELECT FirstName, LastName, dbo.CalculateYearsOfService(HireDate) AS YearsOfService
FROM Employees
WHERE dbo.CalculateYearsOfService(HireDate) >= 2;
Output (assuming today is 2025-08-27):
	FirstName
	LastName
	YearsOfService

	Jane
	Smith
	3

	John
	Doe
	2


Advanced Scalar Function: Salary Bonus Calculation
Example: Calculate a performance-based bonus with tiered rates.
CREATE FUNCTION dbo.CalculateBonus (
    @Salary DECIMAL(10,2),
    @PerformanceRating INT
)
RETURNS DECIMAL(10,2)
WITH SCHEMABINDING
AS
BEGIN
    DECLARE @BonusRate DECIMAL(4,2);
    SET @BonusRate = CASE
        WHEN @PerformanceRating >= 8 THEN 0.15
        WHEN @PerformanceRating >= 5 THEN 0.10
        ELSE 0.05
    END;
    RETURN @Salary * @BonusRate;
END;
GO
Explanation:
· @PerformanceRating: 1–10 scale.
· CASE: Sets bonus rate (15% for 8+, 10% for 5–7, 5% otherwise).
· WITH SCHEMABINDING: Improves performance by binding to schema, preventing table changes.
· Returns bonus amount.
Use:
SELECT FirstName, LastName, Salary,
       dbo.CalculateBonus(Salary, 8) AS Bonus
FROM Employees
WHERE DepartmentID = 1;
Output (HR employees, rating 8):
	FirstName
	LastName
	Salary
	Bonus

	John
	Doe
	75000.00
	11250.00

	Alice
	Brown
	60000.00
	9000.00

	Sarah
	Davis
	68000.00
	10200.00


5.3 Inline Table-Valued Functions
Inline TVFs return a table result via a single SELECT statement, optimized like views.
Basic Inline TVF
Example: Get employees by department.
CREATE FUNCTION dbo.GetEmployeesByDept (@DepartmentID INT)
RETURNS TABLE
AS
RETURN
    SELECT e.EmployeeID, e.FirstName, e.LastName, e.Salary, d.DepartmentName
    FROM Employees e
    INNER JOIN Departments d ON e.DepartmentID = d.DepartmentID
    WHERE e.DepartmentID = @DepartmentID;
GO
Explanation:
· RETURNS TABLE: Specifies table output.
· RETURN: Single SELECT statement.
· Joins Employees and Departments.
Use:
SELECT * FROM dbo.GetEmployeesByDept(2);
Output (IT employees):
	EmployeeID
	FirstName
	LastName
	Salary
	DepartmentName

	2
	Jane
	Smith
	82000.00
	IT

	6
	Tom
	Wilson
	72000.00
	IT


Advanced Inline TVF: Project Team Details
Example: Get project team members with roles and project details.
CREATE FUNCTION dbo.GetProjectTeam (@ProjectID INT)
RETURNS TABLE
AS
RETURN
    SELECT 
        e.FirstName, 
        e.LastName, 
        ep.Role, 
        ep.AssignmentDate,
        p.ProjectName,
        p.Budget
    FROM EmployeeProjects ep
    INNER JOIN Employees e ON ep.EmployeeID = e.EmployeeID
    INNER JOIN Projects p ON ep.ProjectID = p.ProjectID
    WHERE p.ProjectID = @ProjectID
    AND p.StartDate <= GETDATE()
    AND (p.EndDate IS NULL OR p.EndDate >= GETDATE());
GO
Explanation:
· Filters for active projects (started, not ended).
· Joins three tables to get team details.
· Efficient due to inline execution (no temporary tables).
Use:
SELECT * FROM dbo.GetProjectTeam(2);
Output (Recruitment Portal team):
	FirstName
	LastName
	Role
	AssignmentDate
	ProjectName
	Budget

	Bob
	Johnson
	HR Coordinator
	2024-01-20
	Recruitment Portal
	50000.00


[bookmark: _Toc207197816]5.4 Multi-Statement Table-Valued Functions
MSTVFs define a table variable, populated with multiple statements.
Basic MSTVF
Example: Return employees with salary ranges.
CREATE FUNCTION dbo.GetEmployeesBySalaryRange (
    @MinSalary DECIMAL(10,2),
    @MaxSalary DECIMAL(10,2)
)
RETURNS @Result TABLE (
    EmployeeID INT,
    FullName NVARCHAR(101),
    Salary DECIMAL(10,2)
)
AS
BEGIN
    INSERT INTO @Result (EmployeeID, FullName, Salary)
    SELECT EmployeeID, 
           FirstName + ' ' + LastName AS FullName, 
           Salary
    FROM Employees
    WHERE Salary BETWEEN @MinSalary AND @MaxSalary;
    RETURN;
END;
GO
Explanation:
· @Result: Table variable with defined columns.
· Populates with filtered employees.
· Concatenates names for FullName.
Use:
SELECT * FROM dbo.GetEmployeesBySalaryRange(60000, 75000);
Output:
	EmployeeID
	FullName
	Salary

	1
	John Doe
	75000.00

	3
	Bob Johnson
	65000.00

	4
	Alice Brown
	60000.00

	5
	Sarah Davis
	68000.00


Advanced MSTVF: Employee Project Summary
Example: Summarize employee project involvement with hours worked.
CREATE FUNCTION dbo.GetEmployeeProjectSummary (@EmployeeID INT)
RETURNS @Summary TABLE (
    EmployeeID INT,
    FullName NVARCHAR(101),
    ProjectCount INT,
    TotalEstimatedHours INT,
    HighestBudgetProject NVARCHAR(100)
)
AS
BEGIN
    DECLARE @TotalHours INT;
    
    -- Calculate estimated hours based on project duration
    INSERT INTO @Summary (EmployeeID, FullName, ProjectCount, TotalEstimatedHours, HighestBudgetProject)
    SELECT 
        e.EmployeeID,
        e.FirstName + ' ' + e.LastName,
        COUNT(ep.ProjectID) AS ProjectCount,
        SUM(DATEDIFF(DAY, p.StartDate, ISNULL(p.EndDate, GETDATE())) * 8) AS TotalEstimatedHours,
        MAX(p.ProjectName) AS HighestBudgetProject
    FROM Employees e
    LEFT JOIN EmployeeProjects ep ON e.EmployeeID = ep.EmployeeID
    LEFT JOIN Projects p ON ep.ProjectID = p.ProjectID
    WHERE e.EmployeeID = @EmployeeID
    GROUP BY e.EmployeeID, e.FirstName, e.LastName
    HAVING COUNT(ep.ProjectID) > 0;
    
    RETURN;
END;
GO
Explanation:
· Estimates hours (days × 8 hours/day).
· Aggregates project count and max project name.
· HAVING: Ensures only employees with projects are included.
Use:
SELECT * FROM dbo.GetEmployeeProjectSummary(1);
Output (John Doe on ERP Implementation):
	EmployeeID
	FullName
	ProjectCount
	TotalEstimatedHours
	HighestBudgetProject

	1
	John Doe
	1
	7296
	ERP Implementation


[bookmark: _Toc207197817]5.5 Using UDFs in Other Constructs
In Computed Columns
Add a computed column for years of service.
ALTER TABLE Employees ADD YearsOfService AS dbo.CalculateYearsOfService(HireDate);
Query:
SELECT FirstName, LastName, YearsOfService FROM Employees;
In CHECK Constraints
Ensure new employees have valid hire dates.
ALTER TABLE Employees
ADD CONSTRAINT CHK_HireDate CHECK (dbo.CalculateYearsOfService(HireDate) >= 0);
In Joins
Join with TVF:
SELECT t.FullName, t.Salary, d.DepartmentName
FROM dbo.GetEmployeesBySalaryRange(60000, 80000) t
JOIN Departments d ON t.EmployeeID IN (
    SELECT EmployeeID FROM Employees WHERE DepartmentID = d.DepartmentID
);
5.6 Performance Considerations
· Scalar UDFs: Avoid in large datasets; they execute row-by-row, causing overhead. Use WITH SCHEMABINDING or rewrite as inline TVFs.
· Inline TVFs: Optimized like views, generally faster than MSTVFs.
· MSTVFs: Use sparingly; table variables don’t use statistics, impacting performance.
· Indexes: Cannot index UDF results directly, but consider indexing underlying tables.
· Execution Plans: Use SET STATISTICS IO ON and SSMS’s execution plan to optimize.
Example: Optimize join performance.
CREATE NONCLUSTERED INDEX IX_Employees_Salary ON Employees(Salary);
5.7 Debugging and Error Handling
UDFs have limited error handling (no TRY/CATCH). Use RETURN for early exit.
Example: Safe scalar function.
CREATE FUNCTION dbo.SafeDivide (@Numerator INT, @Denominator INT)
RETURNS DECIMAL(10,2)
AS
BEGIN
    IF @Denominator = 0
        RETURN NULL;
    RETURN CAST(@Numerator AS DECIMAL(10,2)) / @Denominator;
END;
GO
Use:
SELECT dbo.SafeDivide(10, 0) AS Result; -- Returns NULL
5.8 Best Practices
· Use SCHEMABINDING: For performance and schema consistency.
· Prefix with Schema: dbo.FunctionName for clarity.
· Avoid Side Effects: UDFs should not modify data.
· Keep Simple: Complex logic may be better in stored procedures.
· Document: Comment parameters, purpose, and return types.
· Test Edge Cases: NULLs, empty tables, extreme values.
5.9 Advanced Example: Dynamic Aggregation Function
Create an MSTVF to aggregate project budgets by custom ranges.
CREATE FUNCTION dbo.GetProjectBudgetRanges (@RangeSize DECIMAL(10,2))
RETURNS @Result TABLE (
    BudgetRange NVARCHAR(50),
    ProjectCount INT,
    TotalBudget DECIMAL(12,2)
)
AS
BEGIN
    INSERT INTO @Result (BudgetRange, ProjectCount, TotalBudget)
    SELECT 
        CAST(FLOOR(Budget / @RangeSize) * @RangeSize AS NVARCHAR(50)) + '-' + 
        CAST((FLOOR(Budget / @RangeSize) + 1) * @RangeSize AS NVARCHAR(50)) AS BudgetRange,
        COUNT(*) AS ProjectCount,
        SUM(Budget) AS TotalBudget
    FROM Projects
    GROUP BY FLOOR(Budget / @RangeSize);
    RETURN;
END;
GO
Use:
SELECT * FROM dbo.GetProjectBudgetRanges(50000);
Output:
	BudgetRange
	ProjectCount
	TotalBudget

	0-50000
	1
	50000.00

	50000-100000
	1
	80000.00

	100000-150000
	1
	150000.00


Explanation:
· Groups projects by budget ranges (e.g., $0–50,000).
· Dynamic FLOOR calculation for flexible ranges.
[bookmark: _Toc207197818]5.10 Exercises
1. Create a scalar function to format employee names (e.g., “LastName, FirstName”).
2. Build an inline TVF to list projects by department with active status.
3. Create an MSTVF to return employees with their total project hours and roles.
4. Add a computed column using a scalar function for employee tenure in months.
5. Optimize a TVF with an index and compare execution plans.
[bookmark: _Toc207197819]5.11 Conclusion
User-defined functions provide powerful ways to encapsulate logic, from simple calculations to complex table results. Scalar functions are great for reusable calculations, while inline TVFs offer performance for table results. MSTVFs provide flexibility for complex logic. Mastering UDFs enhances query modularity and prepares you for triggers in Chapter 6.


[bookmark: _Toc207197820]Chapter 6: Triggers
[bookmark: _Toc207197821]6.1 Introduction to Triggers
Triggers in SQL Server are special stored procedures that automatically execute in response to specific database events, such as data modifications (INSERT, UPDATE, DELETE) or database structure changes (CREATE, ALTER, DROP). They are powerful for enforcing business rules, maintaining audit logs, or preventing invalid data changes, but they must be used carefully to avoid performance issues or unintended side effects.
Types of Triggers
· DML Triggers: Respond to data manipulation language (DML) events (INSERT, UPDATE, DELETE). 
· AFTER: Execute after the event completes.
· INSTEAD OF: Execute instead of the event, allowing custom logic.
· DDL Triggers: Respond to data definition language (DDL) events (e.g., table creation).
· Logon Triggers: Respond to server logon events (e.g., for auditing).
Benefits
· Automation: Enforce rules or log changes without application intervention.
· Data Integrity: Validate or transform data before saving.
· Audit Trails: Track changes for compliance or debugging.
Limitations
· Can impact performance if complex or poorly designed.
· Limited error handling compared to stored procedures.
· Recursive triggers can cause infinite loops if not managed.
We’ll use the CompanyDB schema:
· Employees: EmployeeID (PK), FirstName, LastName, Email, HireDate, Salary, DepartmentID (FK), Photo, YearsOfService.
· Departments: DepartmentID (PK), DepartmentName, Location.
· Projects: ProjectID (PK), ProjectName, StartDate, EndDate, Budget, DepartmentID (FK).
· EmployeeProjects: EmployeeID, ProjectID, Role, AssignmentDate.
[bookmark: _Toc207197822]6.2 DML Triggers: AFTER Triggers
AFTER triggers execute after the triggering event (INSERT, UPDATE, DELETE) completes but before the transaction commits. They access special tables: inserted (new data) and deleted (old data).
Basic AFTER Trigger
Example: Log employee inserts to an audit table.
USE CompanyDB;
GO

CREATE TABLE EmployeeAudit (
    AuditID INT IDENTITY(1,1) PRIMARY KEY,
    EmployeeID INT,
    Action NVARCHAR(50),
    ActionDate DATETIME,
    OldData NVARCHAR(MAX),
    NewData NVARCHAR(MAX)
);

CREATE TRIGGER trg_AfterInsertEmployee
ON Employees
AFTER INSERT
AS
BEGIN
    INSERT INTO EmployeeAudit (EmployeeID, Action, ActionDate, NewData)
    SELECT 
        i.EmployeeID, 
        'INSERT', 
        GETDATE(), 
        (SELECT * FROM inserted FOR XML RAW) 
    FROM inserted i;
END;
GO
Explanation:
· EmployeeAudit: Stores audit data.
· trg_AfterInsertEmployee: Fires after INSERT on Employees.
· inserted: Magic table with new rows.
· FOR XML RAW: Converts row to XML for flexible logging.
Test:
INSERT INTO Employees (FirstName, LastName, Email, HireDate, Salary, DepartmentID)
VALUES ('Pam', 'Beesly', 'pam.beesly@company.com', '2024-09-01', 62000.00, 1);

SELECT * FROM EmployeeAudit;
Output:
	AuditID
	EmployeeID
	Action
	ActionDate
	OldData
	NewData

	1
	7
	INSERT
	2025-08-27 09:28:00
	NULL
	<row EmployeeID="7" FirstName="Pam" LastName="Beesly" ... />


Advanced AFTER Trigger: Salary Validation
Example: Prevent salary decreases and log updates.
CREATE TRIGGER trg_AfterUpdateEmployee
ON Employees
AFTER UPDATE
AS
BEGIN
    SET NOCOUNT ON;
    IF EXISTS (
        SELECT 1 
        FROM inserted i 
        JOIN deleted d ON i.EmployeeID = d.EmployeeID 
        WHERE i.Salary < d.Salary
    )
    BEGIN
        RAISERROR ('Salary cannot be decreased.', 16, 1);
        ROLLBACK TRANSACTION;
        RETURN;
    END;

    INSERT INTO EmployeeAudit (EmployeeID, Action, ActionDate, OldData, NewData)
    SELECT 
        i.EmployeeID, 
        'UPDATE', 
        GETDATE(), 
        (SELECT * FROM deleted WHERE EmployeeID = i.EmployeeID FOR XML RAW),
        (SELECT * FROM inserted WHERE EmployeeID = i.EmployeeID FOR XML RAW)
    FROM inserted i;
END;
GO
Explanation:
· Checks if any new salary (inserted) is less than the old salary (deleted).
· RAISERROR: Raises an error and rolls back if invalid.
· Logs successful updates to EmployeeAudit.
Test:
sql
-- Valid update
UPDATE Employees SET Salary = 78000.00 WHERE EmployeeID = 1;

-- Invalid update (will fail)
UPDATE Employees SET Salary = 70000.00 WHERE EmployeeID = 1;
Error Output:
text
Msg 50000, Level 16, State 1
Salary cannot be decreased.
6.3 DML Triggers: INSTEAD OF Triggers
INSTEAD OF triggers override the triggering event, allowing custom logic.
Basic INSTEAD OF Trigger
Example: Prevent deletion of employees on active projects.
CREATE TRIGGER trg_InsteadOfDeleteEmployee
ON Employees
INSTEAD OF DELETE
AS
BEGIN
    SET NOCOUNT ON;
    IF EXISTS (
        SELECT 1 
        FROM deleted d
        JOIN EmployeeProjects ep ON d.EmployeeID = ep.EmployeeID
        JOIN Projects p ON ep.ProjectID = p.ProjectID
        WHERE p.EndDate IS NULL OR p.EndDate > GETDATE()
    )
    BEGIN
        RAISERROR ('Cannot delete employees assigned to active projects.', 16, 1);
        RETURN;
    END;

    DELETE FROM Employees WHERE EmployeeID IN (SELECT EmployeeID FROM deleted);
END;
GO
Explanation:
· Checks if deleted employees are on active projects.
· If so, raises an error; otherwise, performs the delete.
Test:
-- Should fail (John is on ERP Implementation)
DELETE FROM Employees WHERE EmployeeID = 1;

-- Should succeed (assuming Bob’s project is inactive)
DELETE FROM Employees WHERE EmployeeID = 3;
[bookmark: _Toc207197823]6.4 DDL Triggers
DDL triggers respond to schema changes (e.g., CREATE TABLE).
Basic DDL Trigger
Example: Log table creations.
CREATE TABLE SchemaAudit (
    AuditID INT IDENTITY(1,1) PRIMARY KEY,
    EventType NVARCHAR(100),
    ObjectName NVARCHAR(128),
    EventDate DATETIME,
    UserName NVARCHAR(128)
);

CREATE TRIGGER trg_DDLTableCreate
ON DATABASE
FOR CREATE_TABLE
AS
BEGIN
    INSERT INTO SchemaAudit (EventType, ObjectName, EventDate, UserName)
    SELECT 
        EVENTDATA().value('(/EVENT_INSTANCE/EventType)[1]', 'NVARCHAR(100)'),
        EVENTDATA().value('(/EVENT_INSTANCE/ObjectName)[1]', 'NVARCHAR(128)'),
        GETDATE(),
        SUSER_SNAME();
END;
GO
Explanation:
· EVENTDATA(): XML containing event details.
· Logs table creation events with user and timestamp.
Test:
CREATE TABLE TestTable (ID INT);
SELECT * FROM SchemaAudit;
Output:
	AuditID
	EventType
	ObjectName
	EventDate
	UserName

	1
	CREATE_TABLE
	TestTable
	2025-08-27 09:28:00
	YourUser


Advanced DDL Trigger: Prevent Table Drops
Example: Block dropping critical tables.
sql
CREATE TRIGGER trg_PreventTableDrop
ON DATABASE
FOR DROP_TABLE
AS
BEGIN
    DECLARE @TableName NVARCHAR(128) = EVENTDATA().value('(/EVENT_INSTANCE/ObjectName)[1]', 'NVARCHAR(128)');
    IF @TableName IN ('Employees', 'Departments', 'Projects')
    BEGIN
        RAISERROR ('Cannot drop critical tables.', 16, 1);
        ROLLBACK;
    END;
END;
GO
Explanation:
· Checks if the dropped table is critical.
· Rolls back if so.
Test:
DROP TABLE Employees; -- Fails
DROP TABLE TestTable; -- Succeeds
6.5 Advanced Example: Cascading Updates
Example: Update project assignments when an employee’s department changes.
CREATE TRIGGER trg_AfterUpdateEmployeeDept
ON Employees
AFTER UPDATE
AS
BEGIN
    SET NOCOUNT ON;
    IF UPDATE(DepartmentID)
    BEGIN
        UPDATE ep
        SET ep.Role = 'Reassigned - ' + ep.Role
        FROM EmployeeProjects ep
        JOIN inserted i ON ep.EmployeeID = i.EmployeeID
        JOIN deleted d ON i.EmployeeID = d.EmployeeID
        WHERE i.DepartmentID <> d.DepartmentID
        AND EXISTS (
            SELECT 1 
            FROM Projects p 
            WHERE p.ProjectID = ep.ProjectID 
            AND p.DepartmentID = i.DepartmentID
        );

        INSERT INTO EmployeeAudit (EmployeeID, Action, ActionDate, OldData, NewData)
        SELECT 
            i.EmployeeID, 
            'DEPT_CHANGE', 
            GETDATE(),
            (SELECT * FROM deleted WHERE EmployeeID = i.EmployeeID FOR XML RAW),
            (SELECT * FROM inserted WHERE EmployeeID = i.EmployeeID FOR XML RAW)
        FROM inserted i
        JOIN deleted d ON i.EmployeeID = d.EmployeeID
        WHERE i.DepartmentID <> d.DepartmentID;
    END;
END;
GO
Explanation:
· Fires on UPDATE of DepartmentID.
· Updates Role in EmployeeProjects if the project’s department matches the new department.
· Logs the change.
Test:
UPDATE Employees SET DepartmentID = 2 WHERE EmployeeID = 4;
SELECT * FROM EmployeeProjects WHERE EmployeeID = 4;
SELECT * FROM EmployeeAudit WHERE EmployeeID = 4;
6.6 Performance Considerations
· Minimize Logic: Keep triggers lightweight to avoid locking.
· Indexes: Ensure indexes on joined columns (e.g., EmployeeID).
· Avoid Recursion: Use ALTER DATABASE CompanyDB SET RECURSIVE_TRIGGERS OFF; if needed.
· Test Impact: Measure with SET STATISTICS IO ON and execution plans.
· Batch Operations: Triggers fire per statement, so batch updates can slow performance.
Example: Index for performance.
sql
CREATE NONCLUSTERED INDEX IX_EmployeeProjects_EmployeeID ON EmployeeProjects(EmployeeID);
[bookmark: _Toc207197824]6.7 Debugging Triggers
· Log to Table: Use audit tables (e.g., EmployeeAudit).
· PRINT: Limited use in triggers; prefer logging.
· Extended Events: Trace trigger execution.
Example: Add debug logging “‘PRINT’ style”.
ALTER TRIGGER trg_AfterInsertEmployee
ON Employees
AFTER INSERT
AS
BEGIN
    INSERT INTO EmployeeAudit (EmployeeID, Action, ActionDate, NewData)
    SELECT 
        i.EmployeeID, 
        'INSERT (Debug: ' + CAST(@@ROWCOUNT AS NVARCHAR(10)) + ' rows)', 
        GETDATE(), 
        (SELECT * FROM inserted FOR XML RAW)
    FROM inserted i;
END;
GO
6.8 Best Practices
· Keep Simple: Avoid complex logic; use stored procedures for heavy processing.
· Use SET NOCOUNT ON: Prevent rowcount messages from interfering.
· Name Clearly: Prefix like trg_ (e.g., trg_AfterInsertEmployee).
· Document: Comment purpose and logic.
· Test Extensively: Cover edge cases, multi-row operations.
· Disable When Needed: ALTER TABLE Employees DISABLE TRIGGER trg_AfterInsertEmployee;.
[bookmark: _Toc207197825]6.9 Exercises
1. Create an AFTER INSERT trigger to log project creations.
2. Build an INSTEAD OF UPDATE trigger to prevent budget decreases in Projects.
3. Create a DDL trigger to log all index creations.
4. Implement a trigger to update EmployeeProjects roles when a project’s department changes.
5. Test a trigger with a bulk insert and optimize with an index.
[bookmark: _Toc207197826]6.10 Conclusion
Triggers automate data integrity, auditing, and business rules, but require careful design to avoid performance issues. You’ve learned to create AFTER and INSTEAD OF DML triggers, DDL triggers, and advanced scenarios, setting the stage for indexing and optimization in Chapter 7.


[bookmark: _Toc207197827]Chapter 7: Indexes and Performance Optimization
[bookmark: _Toc207197828]7.1 Introduction to Indexes and Performance
Indexes in SQL Server are database structures that improve query performance by allowing faster data retrieval, similar to an index in a book. However, they come with trade-offs, such as increased storage and slower write operations (INSERT, UPDATE, DELETE). Performance optimization involves creating effective indexes, writing efficient queries, and using tools to analyze and tune performance. This chapter explores index types, their maintenance, and query optimization strategies to ensure your SQL Server database performs efficiently.
Why Indexes Matter
· Speed Up Reads: Indexes reduce the number of data pages scanned for SELECT queries.
· Trade-Offs: Slow down writes due to index updates.
· Use Cases: Frequent WHERE, JOIN, ORDER BY, or GROUP BY columns benefit most.
Why Optimize Queries
· Poorly written queries can cause full table scans, excessive I/O, or locking.
· Optimized queries reduce resource usage and improve response times.
We’ll use the CompanyDB schema:
· Employees: EmployeeID (PK), FirstName, LastName, Email, HireDate, Salary, DepartmentID (FK), Photo, YearsOfService.
· Departments: DepartmentID (PK), DepartmentName, Location.
· Projects: ProjectID (PK), ProjectName, StartDate, EndDate, Budget, DepartmentID (FK).
· EmployeeProjects: EmployeeID, ProjectID, Role, AssignmentDate.
· EmployeeAudit: AuditID (PK), EmployeeID, Action, ActionDate, OldData, NewData.
[bookmark: _Toc207197829]7.2 Index Types in SQL Server
SQL Server supports several index types, each suited for specific scenarios.
[bookmark: _Toc207197830]7.2.1 Clustered Index
· Defines the physical order of data in a table (one per table).
· Typically created on the primary key automatically.
Example: The Employees table has a clustered index on EmployeeID (from PRIMARY KEY).
-- Verify clustered index
SELECT name, type_desc 
FROM sys.indexes 
WHERE object_id = OBJECT_ID('Employees') AND is_primary_key = 1;
Output:
	name
	type_desc

	PK__Employees__...
	CLUSTERED


[bookmark: _Toc207197831]7.2.2 Nonclustered Index
· Separate structure with pointers to table data, like a book index.
· Can have multiple per table.
Example: Create a nonclustered index on Salary for range queries.
USE CompanyDB;
GO

CREATE NONCLUSTERED INDEX IX_Employees_Salary 
ON Employees(Salary);
Explanation:
· Speeds up queries like SELECT * FROM Employees WHERE Salary > 70000.
· Stores Salary values and pointers to rows.
[bookmark: _Toc207197832]7.2.3 Included Columns
Include non-key columns to cover queries without accessing the table.
Example: Index for employee searches by department and salary.
CREATE NONCLUSTERED INDEX IX_Employees_Dept_Salary
ON Employees(DepartmentID, Salary)
INCLUDE (FirstName, LastName);
Explanation:
· DepartmentID, Salary: Key columns for sorting/filtering.
· INCLUDE (FirstName, LastName): Stores these columns in the index, avoiding table lookups.
· Covers queries like SELECT FirstName, LastName FROM Employees WHERE DepartmentID = 1 AND Salary > 60000.
[bookmark: _Toc207197833]7.2.4 Filtered Index
Indexes a subset of rows, reducing size and maintenance.
Example: Index active projects only.
CREATE NONCLUSTERED INDEX IX_Projects_Active
ON Projects(ProjectName)
WHERE EndDate IS NULL OR EndDate > GETDATE();
Explanation:
· Only indexes projects that are active, reducing index size.
· Useful for queries like SELECT ProjectName FROM Projects WHERE EndDate IS NULL.
[bookmark: _Toc207197834]7.2.5 Composite Index
Indexes multiple columns for complex queries.
Example: Index for employee-project lookups.
CREATE NONCLUSTERED INDEX IX_EmployeeProjects_Composite
ON EmployeeProjects(EmployeeID, ProjectID, AssignmentDate);
Explanation:
· Supports queries filtering on EmployeeID, ProjectID, or sorting by AssignmentDate.
[bookmark: _Toc207197835]7.3 Analyzing Query Performance
Use tools to identify bottlenecks:
· Execution Plans: Graphical or XML plans showing how SQL Server executes queries.
· SET STATISTICS IO ON: Reports I/O usage.
· Dynamic Management Views (DMVs): Track performance metrics.
Execution Plan Example
Query without index:
SET STATISTICS IO ON;
SELECT FirstName, LastName FROM Employees WHERE Salary > 70000;
IO Output (before index):
Table 'Employees'. Scan count 1, logical reads 50, ...
Add index:
CREATE NONCLUSTERED INDEX IX_Employees_Salary ON Employees(Salary);
Run again:
IO Output (after index):
Table 'Employees'. Scan count 1, logical reads 10, ...
Explanation:
· Reduced reads indicate index seek instead of table scan.
· View plan in SSMS (Query > Display Estimated Execution Plan).
[bookmark: _Toc207197836]7.4 Query Optimization Techniques
[bookmark: _Toc207197837]7.4.1 Write Sargable Queries
Sargable (Search ARGument ABLE) queries leverage indexes.
Non-sargable:
SELECT * FROM Employees WHERE YEAR(HireDate) = 2023;
Sargable:
SELECT * FROM Employees WHERE HireDate >= '2023-01-01' AND HireDate < '2024-01-01';
Explanation:
· Functions like YEAR prevent index usage.
· Range conditions use indexes effectively.
[bookmark: _Toc207197838]7.4.2 Avoid SELECT *
Specify columns to reduce I/O and leverage covering indexes.
Example:
-- Instead of SELECT *
SELECT EmployeeID, FirstName, LastName FROM Employees WHERE DepartmentID = 1;
[bookmark: _Toc207197839]7.4.3 Use Joins Efficiently
Example: Optimize a join-heavy query.
SELECT e.FirstName, e.LastName, p.ProjectName, d.DepartmentName
FROM Employees e
INNER JOIN EmployeeProjects ep ON e.EmployeeID = ep.EmployeeID
INNER JOIN Projects p ON ep.ProjectID = p.ProjectID
INNER JOIN Departments d ON e.DepartmentID = d.DepartmentID
WHERE e.Salary > 70000
AND p.EndDate IS NULL;
Optimization:
· Ensure indexes on EmployeeID, ProjectID, DepartmentID, Salary.
· Use INNER JOIN for strict matches to reduce rows early.
[bookmark: _Toc207197840]7.5 Advanced Example: Index for Complex Reporting
Create a report for project budgets by department with employee counts.
Query:
SELECT 
    d.DepartmentName,
    COUNT(DISTINCT e.EmployeeID) AS EmployeeCount,
    SUM(p.Budget) AS TotalBudget
FROM Departments d
LEFT JOIN Projects p ON d.DepartmentID = p.DepartmentID
LEFT JOIN EmployeeProjects ep ON p.ProjectID = ep.ProjectID
LEFT JOIN Employees e ON ep.EmployeeID = e.EmployeeID
GROUP BY d.DepartmentName;
Optimization:
1. Create indexes:
CREATE NONCLUSTERED INDEX IX_Projects_Dept ON Projects(DepartmentID) INCLUDE (Budget, ProjectID);
CREATE NONCLUSTERED INDEX IX_EmployeeProjects_ProjEmp ON EmployeeProjects(ProjectID, EmployeeID);
2. Check execution plan in SSMS.
3. Use DMV to find missing indexes:
SELECT 
    migs.avg_total_user_cost * migs.avg_user_impact * (migs.user_seeks + migs.user_scans) AS improvement_measure,
    mid.statement,
    mid.equality_columns,
    mid.inequality_columns,
    mid.included_columns
FROM sys.dm_db_missing_index_groups mig
JOIN sys.dm_db_missing_index_group_stats migs ON mig.index_group_handle = migs.group_handle
JOIN sys.dm_db_missing_index_details mid ON mig.index_handle = mid.index_handle
WHERE mid.database_id = DB_ID('CompanyDB');
Explanation:
· Indexes cover join and GROUP BY columns.
· DMV suggests additional indexes if needed.
[bookmark: _Toc207197841]7.6 Index Maintenance
Indexes require maintenance to stay effective.
Rebuild Indexes
Fragmentation slows queries.
ALTER INDEX IX_Employees_Salary ON Employees REBUILD;
Reorganize Indexes
Less resource-intensive than rebuild.
ALTER INDEX IX_Employees_Salary ON Employees REORGANIZE;
Check Fragmentation
SELECT 
    index_name = i.name,
    avg_fragmentation_in_percent
FROM sys.dm_db_index_physical_stats(DB_ID('CompanyDB'), OBJECT_ID('Employees'), NULL, NULL, 'LIMITED') s
JOIN sys.indexes i ON s.object_id = i.object_id AND s.index_id = i.index_id;
Explanation:
· Rebuild if fragmentation > 30%; reorganize if 5–30%.
[bookmark: _Toc207197842]7.7 Advanced Example: Partitioned Index
For large tables, partition indexes to improve manageability.
Example: Partition EmployeeAudit by year.
CREATE PARTITION FUNCTION PF_AuditYear (DATETIME)
AS RANGE RIGHT FOR VALUES ('2024-01-01', '2025-01-01');

CREATE PARTITION SCHEME PS_AuditYear
AS PARTITION PF_AuditYear TO ([PRIMARY], [PRIMARY], [PRIMARY]);

ALTER TABLE EmployeeAudit DROP CONSTRAINT PK_EmployeeAudit;
ALTER TABLE EmployeeAudit ADD CONSTRAINT PK_EmployeeAudit PRIMARY KEY NONCLUSTERED (AuditID);

CREATE CLUSTERED INDEX CIX_EmployeeAudit_ActionDate
ON EmployeeAudit(ActionDate)
ON PS_AuditYear(ActionDate);
Explanation:
· Partitions EmployeeAudit by ActionDate year.
· Moves clustered index to partition scheme.
· Improves query performance for date-based audits.
[bookmark: _Toc207197843]7.8 Best Practices
· Index Selectively: Only on frequently queried columns.
· Monitor Usage: Use sys.dm_db_index_usage_stats to find unused indexes.
· Avoid Over-Indexing: Increases write overhead.
· Test Changes: Measure before/after with execution plans.
· Use Covering Indexes: Include frequently selected columns.
· Regular Maintenance: Schedule rebuild/reorganize jobs.
[bookmark: _Toc207197844]7.9 Exercises
1. Create a nonclustered index for HireDate on Employees and test a range query.
2. Write a query with a missing index and use DMV to suggest improvements.
3. Rebuild all indexes on Projects and check fragmentation.
4. Create a filtered index for high-budget projects (> $100,000).
5. Optimize a join query across all tables and verify with execution plan.
[bookmark: _Toc207197845]7.10 Conclusion
Indexes and query optimization are critical for efficient SQL Server performance. You’ve learned to create and manage clustered, nonclustered, and specialized indexes, optimize queries, and use tools like execution plans and DMVs. These skills prepare you for transactions and error handling in Chapter 8.


[bookmark: _Toc207197846]Chapter 8: Transactions and Error Handling
[bookmark: _Toc207197847]8.1 Introduction to Transactions and Error Handling
Transactions in SQL Server ensure data integrity by grouping operations into a single, atomic unit of work. They follow the ACID properties: Atomicity (all or nothing), Consistency (valid state), Isolation (concurrent transactions don’t interfere), and Durability (committed changes are permanent). Error handling, using constructs like TRY...CATCH, ensures robust responses to failures, such as constraint violations or deadlocks.
This chapter explores transaction management, error handling techniques, isolation levels, and advanced scenarios like savepoints and deadlock resolution, building on the CompanyDB schema:
· Employees: EmployeeID (PK), FirstName, LastName, Email, HireDate, Salary, DepartmentID (FK), Photo, YearsOfService.
· Departments: DepartmentID (PK), DepartmentName, Location.
· Projects: ProjectID (PK), ProjectName, StartDate, EndDate, Budget, DepartmentID (FK).
· EmployeeProjects: EmployeeID, ProjectID, Role, AssignmentDate.
· EmployeeAudit: AuditID (PK), EmployeeID, Action, ActionDate, OldData, NewData.
[bookmark: _Toc207197848]8.2 Transaction Basics
A transaction groups T-SQL statements, ensuring they either all succeed or all fail.
Explicit Transactions
Use BEGIN TRANSACTION, COMMIT TRANSACTION, and ROLLBACK TRANSACTION.
Example: Transfer an employee to a new department with audit logging.
USE CompanyDB;
GO

BEGIN TRANSACTION;
BEGIN TRY
    -- Update employee department
    UPDATE Employees
    SET DepartmentID = 2
    WHERE EmployeeID = 4;

    -- Log to audit table
    INSERT INTO EmployeeAudit (EmployeeID, Action, ActionDate, OldData, NewData)
    VALUES (4, 'DEPT_CHANGE', GETDATE(), 
            (SELECT * FROM Employees WHERE EmployeeID = 4 FOR XML RAW),
            (SELECT * FROM Employees WHERE EmployeeID = 4 FOR XML RAW));

    COMMIT TRANSACTION;
END TRY
BEGIN CATCH
    IF @@TRANCOUNT > 0
        ROLLBACK TRANSACTION;
    SELECT 
        ERROR_NUMBER() AS ErrorNumber,
        ERROR_MESSAGE() AS ErrorMessage;
END CATCH;
Explanation:
· BEGIN TRANSACTION: Starts the transaction.
· TRY...CATCH: Wraps operations for error handling.
· COMMIT: Saves changes if successful.
· ROLLBACK: Reverts changes on error.
· @@TRANCOUNT: Tracks open transactions.
Test with an error (invalid DepartmentID):
BEGIN TRANSACTION;
BEGIN TRY
    UPDATE Employees
    SET DepartmentID = 999 -- Non-existent
    WHERE EmployeeID = 4;
    COMMIT TRANSACTION;
END TRY
BEGIN CATCH
    IF @@TRANCOUNT > 0
        ROLLBACK TRANSACTION;
    SELECT 
        ERROR_NUMBER() AS ErrorNumber,
        ERROR_MESSAGE() AS ErrorMessage;
END CATCH;
Output:
	ErrorNumber
	ErrorMessage

	547
	The UPDATE statement conflicted with the FOREIGN KEY constraint...


[bookmark: _Toc207197849]8.3 Savepoints
Savepoints allow partial rollbacks within a transaction.
Example: Assign an employee to a project with a savepoint.
BEGIN TRANSACTION;
BEGIN TRY
    SAVE TRANSACTION AssignStart;
    INSERT INTO EmployeeProjects (EmployeeID, ProjectID, Role, AssignmentDate)
    VALUES (5, 2, 'Tester', '2025-09-01');

    -- Simulate an error
    INSERT INTO EmployeeProjects (EmployeeID, ProjectID, Role, AssignmentDate)
    VALUES (5, 999, 'Invalid', '2025-09-01'); -- Non-existent ProjectID

    COMMIT TRANSACTION;
END TRY
BEGIN CATCH
    IF @@TRANCOUNT > 0
    BEGIN
        ROLLBACK TRANSACTION AssignStart;
        -- Log error but allow partial commit
        INSERT INTO EmployeeAudit (EmployeeID, Action, ActionDate, OldData)
        VALUES (5, 'FAILED_ASSIGNMENT', GETDATE(), ERROR_MESSAGE());
        COMMIT TRANSACTION;
    END;
END CATCH;

SELECT * FROM EmployeeProjects WHERE EmployeeID = 5;
SELECT * FROM EmployeeAudit WHERE EmployeeID = 5;
Explanation:
· SAVE TRANSACTION: Marks a point to roll back to.
· First insert succeeds; second fails.
· Rolls back to AssignStart, keeping the first insert.
· Logs error and commits.
8.4 Transaction Isolation Levels
Isolation levels control how transactions see uncommitted changes, balancing consistency and concurrency.
Common Isolation Levels
· READ UNCOMMITTED: Allows dirty reads (uncommitted data).
· READ COMMITTED (default): Prevents dirty reads but allows non-repeatable reads.
· REPEATABLE READ: Prevents non-repeatable reads but allows phantom reads.
· SERIALIZABLE: Strictest, prevents all concurrency issues but reduces performance.
· SNAPSHOT: Uses row versioning for consistent reads without locking.
Example: Set isolation level to avoid dirty reads.
SET TRANSACTION ISOLATION LEVEL READ COMMITTED;
BEGIN TRANSACTION;
SELECT FirstName, LastName, Salary
FROM Employees WHERE EmployeeID = 1;
COMMIT;
Advanced: Snapshot Isolation
Enable snapshot isolation for consistent reads.
ALTER DATABASE CompanyDB SET ALLOW_SNAPSHOT_ISOLATION ON;

SET TRANSACTION ISOLATION LEVEL SNAPSHOT;
BEGIN TRANSACTION;
SELECT * FROM Projects WHERE Budget > 100000;
-- Other sessions can update without blocking
COMMIT;
Explanation:
· Snapshot isolation uses row versioning, reducing locks.
· Enable at database level first.
[bookmark: _Toc207197850]8.5 Deadlocks and Handling
Deadlocks occur when transactions block each other, causing SQL Server to terminate one.
Simulate a Deadlock
Session 1:
BEGIN TRANSACTION;
UPDATE Employees SET Salary = 80000 WHERE EmployeeID = 1;
WAITFOR DELAY '00:00:05';
UPDATE Projects SET Budget = 160000 WHERE ProjectID = 1;
COMMIT;
Session 2 (run simultaneously):
BEGIN TRANSACTION;
UPDATE Projects SET Budget = 170000 WHERE ProjectID = 1;
WAITFOR DELAY '00:00:05';
UPDATE Employees SET Salary = 81000 WHERE EmployeeID = 1;
COMMIT;
Explanation:
· Session 1 locks Employees, waits for Projects.
· Session 2 locks Projects, waits for Employees.
· SQL Server kills one transaction (victim) with error 1205.
Handle Deadlocks
Example: Retry on deadlock.
DECLARE @Retry INT = 3;
DECLARE @Attempt INT = 1;
WHILE @Attempt <= @Retry
BEGIN
    BEGIN TRY
        BEGIN TRANSACTION;
        UPDATE Employees SET Salary = 80000 WHERE EmployeeID = 1;
        WAITFOR DELAY '00:00:02';
        UPDATE Projects SET Budget = 160000 WHERE ProjectID = 1;
        COMMIT TRANSACTION;
        BREAK;
    END TRY
    BEGIN CATCH
        IF ERROR_NUMBER() = 1205 -- Deadlock
        BEGIN
            SET @Attempt = @Attempt + 1;
            IF @Attempt <= @Retry
            BEGIN
                WAITFOR DELAY '00:00:01';
                CONTINUE;
            END
            ELSE
                THROW;
        END
        ELSE
            THROW;
    END CATCH;
END;
Explanation:
· Retries up to 3 times on deadlock (error 1205).
· THROW: Re-raises non-deadlock errors.
[bookmark: _Toc207197851]8.6 Advanced Example: Complex Transaction with Validation
Example: Transfer budget between projects with validation and logging.
CREATE PROCEDURE TransferProjectBudget
    @FromProjectID INT,
    @ToProjectID INT,
    @Amount DECIMAL(12,2)
AS
BEGIN
    SET NOCOUNT ON;
    BEGIN TRY
        BEGIN TRANSACTION;

        -- Validate inputs
        IF NOT EXISTS (SELECT 1 FROM Projects WHERE ProjectID = @FromProjectID AND Budget >= @Amount)
            THROW 50001, 'Insufficient budget in source project.', 1;
        IF NOT EXISTS (SELECT 1 FROM Projects WHERE ProjectID = @ToProjectID)
            THROW 50002, 'Target project does not exist.', 1;

        -- Update budgets
        UPDATE Projects
        SET Budget = Budget - @Amount
        WHERE ProjectID = @FromProjectID;

        UPDATE Projects
        SET Budget = Budget + @Amount
        WHERE ProjectID = @ToProjectID;

        -- Log transaction
        INSERT INTO EmployeeAudit (EmployeeID, Action, ActionDate, OldData)
        VALUES (NULL, 'BUDGET_TRANSFER', GETDATE(),
                'From ProjectID: ' + CAST(@FromProjectID AS NVARCHAR(10)) +
                ', To ProjectID: ' + CAST(@ToProjectID AS NVARCHAR(10)) +
                ', Amount: ' + CAST(@Amount AS NVARCHAR(20)));

        COMMIT TRANSACTION;
    END TRY
    BEGIN CATCH
        IF @@TRANCOUNT > 0
            ROLLBACK TRANSACTION;
        INSERT INTO EmployeeAudit (EmployeeID, Action, ActionDate, OldData)
        VALUES (NULL, 'TRANSFER_FAILED', GETDATE(), ERROR_MESSAGE());
        THROW;
    END CATCH;
END;
GO
Test:
EXEC TransferProjectBudget @FromProjectID = 1, @ToProjectID = 2, @Amount = 20000;
SELECT * FROM Projects WHERE ProjectID IN (1, 2);
SELECT * FROM EmployeeAudit WHERE Action LIKE 'BUDGET%';
Explanation:
· Validates source project has enough budget.
· Updates both projects atomically.
· Logs success or failure.
[bookmark: _Toc207197852]8.7 Performance Considerations
· Minimize Transaction Scope: Keep transactions short to reduce locking.
· Use Appropriate Isolation: Avoid SERIALIZABLE unless necessary.
· Monitor Deadlocks: Use sys.dm_tran_locks or Extended Events.
· Batch Operations: Process large updates in chunks to avoid escalation to table locks.
Example: Batch update.
DECLARE @BatchSize INT = 1000;
WHILE EXISTS (SELECT 1 FROM Employees WHERE Salary < 65000)
BEGIN
    BEGIN TRANSACTION;
    UPDATE TOP (@BatchSize) Employees
    SET Salary = Salary * 1.05
    WHERE Salary < 65000;
    COMMIT;
END;
GO
[bookmark: _Toc207197853]8.8 Best Practices
· Always Use TRY/CATCH: Handle errors gracefully.
· Check @@TRANCOUNT: Ensure proper rollback.
· Log Errors: Use audit tables for debugging.
· Test Deadlocks: Simulate concurrent transactions.
· Document: Comment transaction logic and error cases.
· Use Savepoints: For partial rollbacks in complex transactions.
[bookmark: _Toc207197854]8.9 Exercises
1. Write a transaction to insert an employee and assign them to a project atomically.
2. Create a procedure with a savepoint to update employee salary and log, rolling back only the salary change on error.
3. Test a deadlock scenario and implement retry logic.
4. Use SNAPSHOT isolation for a read-heavy query and compare performance.
5. Build a procedure to transfer employees between departments with validation and logging.
[bookmark: _Toc207197855]8.10 Conclusion
Transactions and error handling ensure data integrity and robustness in SQL Server. You’ve learned to manage transactions, use save points, handle errors, and mitigate deadlocks. These skills prepare you for advanced security topics in Chapter 9.


[bookmark: _Toc207197856]Chapter 9: Security in SQL Server
[bookmark: _Toc207197857]9.1 Introduction to SQL Server Security
Security in SQL Server is critical to protect sensitive data, ensure compliance, and prevent unauthorized access. SQL Server provides a robust security model encompassing authentication (who can access the system), authorization (what they can do), encryption (protecting data), and auditing (tracking actions). This chapter explores these components, focusing on practical implementation and advanced techniques like row-level security and transparent data encryption, using the CompanyDB schema:
· Employees: EmployeeID (PK), FirstName, LastName, Email, HireDate, Salary, DepartmentID (FK), Photo, YearsOfService.
· Departments: DepartmentID (PK), DepartmentName, Location.
· Projects: ProjectID (PK), ProjectName, StartDate, EndDate, Budget, DepartmentID (FK).
· EmployeeProjects: EmployeeID, ProjectID, Role, AssignmentDate.
· EmployeeAudit: AuditID (PK), EmployeeID, Action, ActionDate, OldData, NewData.
Security Goals
· Confidentiality: Protect sensitive data (e.g., salaries).
· Integrity: Prevent unauthorized changes.
· Availability: Ensure access for legitimate users.
· Auditability: Track actions for compliance.
[bookmark: _Toc207197858]9.2 Authentication
Authentication verifies user identity. SQL Server supports two modes:
· Windows Authentication: Uses Windows credentials (preferred for integrated security).
· SQL Server Authentication: Uses username/password stored in SQL Server.
Creating a SQL Server Login
Example: Create a login for an application user.
USE master;
GO

CREATE LOGIN AppUser WITH PASSWORD = 'Str0ngP@ssw0rd!', 
    CHECK_EXPIRATION = ON, CHECK_POLICY = ON;
Explanation:
· CHECK_EXPIRATION: Enforces password expiration.
· CHECK_POLICY: Applies Windows password policies (e.g., complexity).
Creating a Database User
Map the login to a database user.
USE CompanyDB;
GO

CREATE USER AppUser FOR LOGIN AppUser;
Explanation:
· Links AppUser login to CompanyDB.
[bookmark: _Toc207197859]9.3 Authorization
Authorization defines what users can do, using roles and permissions.
Granting Permissions
Example: Grant SELECT on Employees to AppUser.
GRANT SELECT ON Employees TO AppUser;
Explanation:
· Allows AppUser to read Employees data.
Database Roles
Use fixed or user-defined roles for grouped permissions.
Example: Create a role for HR staff.
CREATE ROLE HRRole;
GRANT SELECT, UPDATE ON Employees TO HRRole;
GRANT SELECT ON Departments TO HRRole;
ALTER ROLE HRRole ADD MEMBER AppUser;
Explanation:
· HRRole: Groups permissions for HR tasks.
· ADD MEMBER: Assigns AppUser to the role.
Deny and Revoke
· DENY: Explicitly blocks access.
· REVOKE: Removes granted permissions.
Example: Deny access to sensitive columns.
DENY SELECT ON Employees(Salary, Photo) TO AppUser;
Explanation:
· Prevents AppUser from viewing Salary or Photo.
[bookmark: _Toc207197860]9.4 Row-Level Security (RLS)
RLS restricts data access at the row level based on user attributes.
Implementing RLS
Example: Restrict employees to see only their department’s data.
-- Create a function to filter rows
CREATE FUNCTION dbo.fn_RestrictDepartmentAccess (@DepartmentID INT)
RETURNS TABLE
WITH SCHEMABINDING
AS
RETURN
    SELECT 1 AS Allowed
    WHERE @DepartmentID = (
        SELECT DepartmentID 
        FROM Employees 
        WHERE Email = ORIGINAL_LOGIN()
    ) OR ORIGINAL_LOGIN() = 'sa';
GO

-- Create security policy
CREATE SECURITY POLICY DepartmentFilter
ADD FILTER PREDICATE dbo.fn_RestrictDepartmentAccess(DepartmentID)
ON Employees
WITH (STATE = ON);
GO
Explanation:
· fn_RestrictDepartmentAccess: Checks if the user’s email (from ORIGINAL_LOGIN) matches a department.
· SECURITY POLICY: Applies the filter to Employees.
· sa bypasses for admin access.
Test as AppUser:
-- Simulate AppUser (ensure AppUser's email is in Employees)
EXECUTE AS USER = 'AppUser';
SELECT * FROM Employees; -- Only sees own department
REVERT;
[bookmark: _Toc207197861]9.5 Encryption
Encryption protects data at rest and in transit.
Transparent Data Encryption (TDE)
Encrypts the database files.
Example: Enable TDE on CompanyDB.
USE master;
GO

-- Create master key
CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'M@sterK3yP@ss!';
GO

-- Create certificate
CREATE CERTIFICATE CompanyDBCert WITH SUBJECT = 'CompanyDB Encryption';
GO

USE CompanyDB;
GO

-- Create database encryption key
CREATE DATABASE ENCRYPTION KEY
WITH ALGORITHM = AES_256
ENCRYPTION BY SERVER CERTIFICATE CompanyDBCert;
GO

-- Enable TDE
ALTER DATABASE CompanyDB SET ENCRYPTION ON;
GO
Explanation:
Encrypts data files and backups.
Requires master key and certificate.
Column-Level Encryption
Encrypt specific columns (e.g., Photo).
Example:
-- Create a symmetric key
CREATE SYMMETRIC KEY EmployeePhotoKey
WITH ALGORITHM = AES_256
ENCRYPTION BY CERTIFICATE CompanyDBCert;
GO

-- Add encrypted column
ALTER TABLE Employees
ADD EncryptedPhoto VARBINARY(MAX);
GO

-- Encrypt data
OPEN SYMMETRIC KEY EmployeePhotoKey
DECRYPTION BY CERTIFICATE CompanyDBCert;

UPDATE Employees
SET EncryptedPhoto = ENCRYPTBYKEY(KEY_GUID('EmployeePhotoKey'), Photo);

-- Decrypt for viewing
SELECT 
    EmployeeID,
    CAST(DECRYPTBYKEY(EncryptedPhoto) AS VARBINARY(MAX)) AS DecryptedPhoto
FROM Employees
WHERE EmployeeID = 1;

CLOSE SYMMETRIC KEY EmployeePhotoKey;
Explanation:
· Uses symmetric key for performance.
· ENCRYPTBYKEY/DECRYPTBYKEY: Encrypts/decrypts data.
[bookmark: _Toc207197862]9.6 Auditing
Auditing tracks user actions for compliance.
SQL Server Audit
Example: Audit SELECT operations on Employees.
USE master;
GO

-- Create server audit
CREATE SERVER AUDIT EmployeeAccessAudit
TO FILE (FILEPATH = 'C:\SQLAudits\')
WITH (ON_FAILURE = CONTINUE);
GO

-- Enable audit
ALTER SERVER AUDIT EmployeeAccessAudit WITH (STATE = ON);
GO

USE CompanyDB;
GO

-- Create database audit specification
CREATE DATABASE AUDIT SPECIFICATION EmployeeAccessSpec
FOR SERVER AUDIT EmployeeAccessAudit
ADD (SELECT ON Employees BY PUBLIC)
WITH (STATE = ON);
GO
Explanation:
· Logs SELECT operations to a file.
· PUBLIC: Applies to all users.
View audit logs:
SELECT event_time, action_id, statement
FROM sys.fn_get_audit_file('C:\SQLAudits\*.sqlaudit', default, default);
Trigger-Based Auditing
Already implemented in EmployeeAudit (Chapter 6). Example: Extend for SELECT.
CREATE TABLE SelectAudit (
    AuditID INT IDENTITY(1,1) PRIMARY KEY,
    TableName NVARCHAR(128),
    UserName NVARCHAR(128),
    ActionDate DATETIME
);

CREATE TRIGGER trg_AuditEmployeeSelect
ON Employees
AFTER SELECT
AS
BEGIN
    INSERT INTO SelectAudit (TableName, UserName, ActionDate)
    VALUES ('Employees', SUSER_SNAME(), GETDATE());
END;
GO
Test:
SELECT * FROM Employees;
SELECT * FROM SelectAudit;
[bookmark: _Toc207197863]9.7 Advanced Example: Dynamic Access Control
Example: Create a procedure to grant permissions dynamically based on user roles.
CREATE PROCEDURE GrantDepartmentAccess
    @UserName NVARCHAR(128),
    @DepartmentID INT
AS
BEGIN
    SET NOCOUNT ON;
    BEGIN TRY
        DECLARE @SQL NVARCHAR(MAX);
        SET @SQL = N'GRANT SELECT ON Employees TO ' + QUOTENAME(@UserName) +
                   N' WHERE DepartmentID = ' + CAST(@DepartmentID AS NVARCHAR(10));
        EXEC sp_executesql @SQL;
        
        INSERT INTO EmployeeAudit (EmployeeID, Action, ActionDate, OldData)
        VALUES (NULL, 'GRANT_ACCESS', GETDATE(), 
                'User: ' + @UserName + ', Dept: ' + CAST(@DepartmentID AS NVARCHAR(10)));
    END TRY
    BEGIN CATCH
        INSERT INTO EmployeeAudit (EmployeeID, Action, ActionDate, OldData)
        VALUES (NULL, 'GRANT_FAILED', GETDATE(), ERROR_MESSAGE());
        THROW;
    END CATCH;
END;
GO
Test:
EXEC GrantDepartmentAccess 'AppUser', 1;
Explanation:
· Dynamically grants SELECT with a WHERE clause.
· Logs success or failure.
[bookmark: _Toc207197864]9.8 Performance Considerations
· RLS: Filter predicates can impact query performance; index filtered columns.
· Encryption: Adds CPU overhead; use selectively for sensitive data.
· Auditing: File-based audits can grow large; manage storage.
· Permissions: Minimize GRANTs to reduce security management overhead.
Example: Index for RLS.
CREATE NONCLUSTERED INDEX IX_Employees_Email ON Employees(Email);
[bookmark: _Toc207197865]9.9 Best Practices
· Use Windows Authentication: More secure than SQL logins.
· Principle of Least Privilege: Grant only necessary permissions.
· Encrypt Sensitive Data: Use TDE or column encryption for compliance.
· Regularly Review Permissions: Use sys.database_permissions.
· Backup Keys/Certificates: Store securely outside the database.
· Monitor Audits: Rotate log files to manage size.
[bookmark: _Toc207197866]9.10 Exercises
1. Create a login and user, granting SELECT on Projects.
2. Implement RLS to restrict project access by department.
3. Set up TDE on a test database and verify encryption.
4. Create an audit to track UPDATE operations on Employees.
5. Write a procedure to revoke permissions dynamically.
[bookmark: _Toc207197867]9.11 Conclusion
SQL Server’s security features protect data through authentication, authorization, encryption, and auditing. You’ve learned to manage users, roles, RLS, encryption, and auditing, preparing you for advanced topics like CTEs and window functions in Chapter 10.


[bookmark: _Toc207197868]Chapter 10: Best Practices and Advanced Topics
[bookmark: _Toc207197869]10.1 Introduction to Best Practices and Advanced Topics
This chapter consolidates best practices for writing robust, efficient, and maintainable T-SQL code and introduces advanced SQL Server features to enhance your programming capabilities. Best practices ensure code is readable, performant, and secure, while advanced topics like Common Table Expressions (CTEs), window functions, temporal tables, and JSON support enable complex data manipulation and analysis. We’ll use the CompanyDB schema:
· Employees: EmployeeID (PK), FirstName, LastName, Email, HireDate, Salary, DepartmentID (FK), Photo, YearsOfService.
· Departments: DepartmentID (PK), DepartmentName, Location.
· Projects: ProjectID (PK), ProjectName, StartDate, EndDate, Budget, DepartmentID (FK).
· EmployeeProjects: EmployeeID, ProjectID, Role, AssignmentDate.
· EmployeeAudit: AuditID (PK), EmployeeID, Action, ActionDate, OldData, NewData.
[bookmark: _Toc207197870]10.2 Best Practices for T-SQL Programming
Adhering to best practices ensures your code is maintainable, performant, and secure.
10.2.1 Code Readability
· Consistent Naming: Use prefixes (e.g., usp_ for stored procedures, fn_ for functions, trg_ for triggers).
· Comments: Document purpose, parameters, and logic.
· Formatting: Use consistent indentation and casing (e.g., uppercase keywords).
Example: Well-documented procedure.
-- Purpose: Updates employee salary and logs change
-- Parameters: @EmployeeID - Employee to update, @NewSalary - New salary value
-- Author: [Your Name], 2025-08-27
CREATE PROCEDURE usp_UpdateEmployeeSalary
    @EmployeeID INT,
    @NewSalary DECIMAL(10,2)
AS
BEGIN
    SET NOCOUNT ON;
    BEGIN TRY
        UPDATE Employees
        SET Salary = @NewSalary
        WHERE EmployeeID = @EmployeeID;
    END TRY
    BEGIN CATCH
        THROW;
    END CATCH;
END;
GO
10.2.2 Performance
· **Avoid SELECT *** in production; specify columns.
· Use Sargable Queries: Avoid functions on indexed columns (e.g., WHERE YEAR(HireDate) = 2023).
· Minimize Transactions: Keep transactions short to reduce locking.
· Index Strategically: Cover frequently queried columns (Chapter 7).
10.2.3 Security
· Parameterize Queries: Prevent SQL injection.
· Least Privilege: Grant minimal permissions (Chapter 9).
· Encrypt Sensitive Data: Use TDE or column encryption.
10.2.4 Error Handling
· Always use TRY...CATCH for robust error management.
· Log errors to audit tables.
10.2.5 Version Control
· Store scripts in a repository (e.g., Git).
· Use ALTER instead of CREATE/DROP for updates.
· Backup before schema changes:
BACKUP DATABASE CompanyDB TO DISK = 'C:\Backups\CompanyDB_20250827.bak';
[bookmark: _Toc207197871]10.3 Common Table Expressions (CTEs)
CTEs provide a readable way to define temporary result sets, useful for recursive or hierarchical queries.
Basic CTE
Example: List employees with above-average salaries.
WITH HighEarners AS (
    SELECT EmployeeID, FirstName, LastName, Salary
    FROM Employees
    WHERE Salary > (SELECT AVG(Salary) FROM Employees)
)
SELECT FirstName, LastName, Salary
FROM HighEarners
ORDER BY Salary DESC;
Explanation:
· WITH: Defines the CTE.
· Replaces subquery for clarity.
· Reusable within the query.
Advanced CTE: Recursive Hierarchy
Assume a new table for employee reporting structure.
CREATE TABLE EmployeeHierarchy (
    EmployeeID INT PRIMARY KEY,
    ManagerID INT,
    FOREIGN KEY (EmployeeID) REFERENCES Employees(EmployeeID),
    FOREIGN KEY (ManagerID) REFERENCES Employees(EmployeeID)
);

INSERT INTO EmployeeHierarchy (EmployeeID, ManagerID)
VALUES (1, NULL), (2, 1), (4, 2), (5, 2), (6, 1), (7, 4);
Recursive CTE to list reporting hierarchy:
WITH EmployeeTree AS (
    -- Anchor: Top-level managers
    SELECT EmployeeID, FirstName, LastName, ManagerID, 0 AS Level
    FROM Employees e
    LEFT JOIN EmployeeHierarchy h ON e.EmployeeID = h.EmployeeID
    WHERE h.ManagerID IS NULL
    UNION ALL
    -- Recursive: Subordinates
    SELECT e.EmployeeID, e.FirstName, e.LastName, h.ManagerID, Level + 1
    FROM Employees e
    JOIN EmployeeHierarchy h ON e.EmployeeID = h.EmployeeID
    JOIN EmployeeTree et ON h.ManagerID = et.EmployeeID
)
SELECT 
    REPLICATE('  ', Level) + FirstName + ' ' + LastName AS EmployeeName,
    Level,
    (SELECT FirstName + ' ' + LastName FROM Employees WHERE EmployeeID = EmployeeTree.ManagerID) AS ManagerName
FROM EmployeeTree
ORDER BY Level, LastName;
Output:
	EmployeeName
	Level
	ManagerName

	John Doe
	0
	NULL

	Jane Smith
	1
	John Doe

	Tom Wilson
	1
	John Doe

	Alice Brown
	2
	Jane Smith

	Sarah Davis
	2
	Jane Smith

	Pam Beesly
	3
	Alice Brown


Explanation:
· Anchor: Starts with top-level manager (no ManagerID).
· Recursive: Joins subordinates iteratively.
· REPLICATE: Indents names for visual hierarchy.
[bookmark: _Toc207197872]10.4 Window Functions
Window functions perform calculations across a set of rows (a “window”) without grouping.
Basic Window Function
Example: Rank employees by salary within departments.
SELECT 
    e.FirstName, 
    e.LastName, 
    d.DepartmentName, 
    e.Salary,
    RANK() OVER (PARTITION BY e.DepartmentID ORDER BY e.Salary DESC) AS SalaryRank
FROM Employees e
JOIN Departments d ON e.DepartmentID = d.DepartmentID;
Output:
	FirstName
	LastName
	DepartmentName
	Salary
	SalaryRank

	Jane
	Smith
	IT
	82000.00
	1

	Tom
	Wilson
	IT
	72000.00
	2

	John
	Doe
	HR
	75000.00
	1

	Sarah
	Davis
	HR
	68000.00
	2

	Alice
	Brown
	HR
	60000.00
	3

	Pam
	Beesly
	HR
	62000.00
	4


Explanation:
· PARTITION BY: Groups by DepartmentID.
· RANK(): Assigns rank within each department.
· ORDER BY: Ranks by salary descending.
Advanced Window Function: Running Total
Example: Calculate cumulative project budget by department.
SELECT 
    d.DepartmentName,
    p.ProjectName,
    p.Budget,
    SUM(p.Budget) OVER (PARTITION BY p.DepartmentID ORDER BY p.StartDate) AS RunningBudget
FROM Projects p
JOIN Departments d ON p.DepartmentID = d.DepartmentID;
Output:
	DepartmentName
	ProjectName
	Budget
	RunningBudget

	HR
	Recruitment Portal
	50000.00
	50000.00

	IT
	ERP Implementation
	150000.00
	150000.00

	IT
	Data Migration
	80000.00
	230000.00


Explanation:
· SUM...OVER: Calculates running total within department, ordered by StartDate.
10.5 Temporal Tables
Temporal tables track historical data automatically.
Creating a Temporal Table
Example: Make Employees a temporal table.
ALTER TABLE Employees
ADD 
    SysStartTime DATETIME2 GENERATED ALWAYS AS ROW START NOT NULL,
    SysEndTime DATETIME2 GENERATED ALWAYS AS ROW END NOT NULL,
    PERIOD FOR SYSTEM_TIME (SysStartTime, SysEndTime);

ALTER TABLE Employees
SET (SYSTEM_VERSIONING = ON (HISTORY_TABLE = dbo.EmployeesHistory));
Explanation:
· Adds system-time columns for versioning.
· EmployeesHistory: Stores historical data.
Test:
UPDATE Employees SET Salary = 85000 WHERE EmployeeID = 1;
SELECT * FROM EmployeesHistory WHERE EmployeeID = 1;
Output (History):
	EmployeeID
	FirstName
	LastName
	...
	Salary
	SysStartTime
	SysEndTime

	1
	John
	Doe
	...
	75000.00
	2023-01-15 00:00:00
	2025-08-27 09:36:00


10.6 JSON Support
SQL Server supports JSON for semi-structured data.
Querying JSON
Example: Store and query employee metadata.
ALTER TABLE Employees
ADD Metadata NVARCHAR(MAX) CHECK (ISJSON(Metadata) = 1);

UPDATE Employees
SET Metadata = '{"Skills": ["SQL", "Management"], "Certification": "PMP"}'
WHERE EmployeeID = 2;

SELECT 
    EmployeeID,
    FirstName,
    JSON_VALUE(Metadata, '$.Certification') AS Certification,
    JSON_QUERY(Metadata, '$.Skills') AS Skills
FROM Employees
WHERE JSON_VALUE(Metadata, '$.Certification') = 'PMP';
Output:
	EmployeeID
	FirstName
	Certification
	Skills

	2
	Jane
	PMP
	["SQL", "Management"]


Explanation:
· JSON_VALUE: Extracts scalar values.
· JSON_QUERY: Extracts JSON arrays/objects.
· ISJSON: Validates JSON.
10.7 Advanced Example: Combining CTEs and Window Functions
Example: Analyze employee project contributions.
WITH ProjectAssignments AS (
    SELECT 
        e.EmployeeID,
        e.FirstName + ' ' + e.LastName AS FullName,
        p.ProjectName,
        p.Budget,
        ROW_NUMBER() OVER (PARTITION BY e.EmployeeID ORDER BY p.Budget DESC) AS ProjectRank
    FROM Employees e
    JOIN EmployeeProjects ep ON e.EmployeeID = ep.EmployeeID
    JOIN Projects p ON ep.ProjectID = p.ProjectID
)
SELECT 
    FullName,
    ProjectName,
    Budget,
    SUM(Budget) OVER (PARTITION BY FullName) AS TotalBudgetContribution
FROM ProjectAssignments
WHERE ProjectRank = 1;
Output:
	FullName
	ProjectName
	Budget
	TotalBudgetContribution

	John Doe
	ERP Implementation
	150000.00
	150000.00

	Jane Smith
	ERP Implementation
	150000.00
	150000.00

	Pam Beesly
	Recruitment Portal
	50000.00
	50000.00

	Tom Wilson
	Data Migration
	80000.00
	80000.00


Explanation:
· CTE assigns row numbers to projects per employee.
· Filters for top project per employee.
· Calculates total budget contribution.
10.8 Performance Considerations
· CTEs: Optimize inner SELECT statements; consider temporary tables for large datasets.
· Window Functions: Index columns in PARTITION BY and ORDER BY.
· Temporal Tables: Monitor history table size; index SysStartTime, SysEndTime.
· JSON: Use sparingly for large datasets; prefer relational storage.
Example: Index for window function.
CREATE NONCLUSTERED INDEX IX_Employees_Dept_Salary
ON Employees(DepartmentID, Salary);
[bookmark: _Toc207197873]10.9 Best Practices for Advanced Features
· CTEs: Use for readability; avoid deep nesting.
· Window Functions: Test performance on large datasets.
· Temporal Tables: Enable only for tables needing history.
· JSON: Validate with ISJSON; index computed columns for frequent queries.
· Test and Monitor: Use execution plans and DMVs (sys.dm_exec_query_stats).
[bookmark: _Toc207197874]10.10 Exercises
1. Write a recursive CTE to list all projects under a department hierarchy (assume a DepartmentHierarchy table).
2. Create a window function to calculate running total of salaries by hire date.
3. Set up a temporal table for Projects and query historical budgets.
4. Store and query JSON data for employee skills.
5. Combine a CTE and window function to rank employees by project count.
[bookmark: _Toc207197875]10.11 Conclusion
This chapter solidified best practices for writing robust T-SQL and introduced advanced features like CTEs, window functions, temporal tables, and JSON support. These tools enhance your ability to handle complex data scenarios, preparing you for real-world SQL Server development.


[bookmark: _Toc207197876]Chapter 11: Capstone Project - Building a Comprehensive Sales Dashboard Backend with AdventureWorks2022
[bookmark: _Toc207197877]11.1 Project Overview
This capstone chapter integrates all the concepts from the booklet into a practical, in-depth software project: developing a robust backend for a sales dashboard web application using the AdventureWorks2022 sample database. AdventureWorks2022 models a fictional bicycle manufacturing company, with rich schemas for production, sales, purchasing, and human resources. We'll focus on the Sales schema for dashboard features, while incorporating elements from Production (products), Person (customers/employees), and HumanResources (employees) to create a comprehensive system.
The dashboard backend will support a hypothetical web application (e.g., built with ASP.NET Core or similar) that calls SQL Server stored procedures and functions via APIs to perform CRUD operations, generate reports, and ensure data integrity. Key features include:
· Reporting Metrics: Total sales by customer/product/territory, year-over-year growth, top performers.
· CRUD Interfaces: Add/update/delete sales orders, customers, and products securely.
· Advanced Analytics: Trend analysis, rankings, historical tracking.
· Security and Auditing: Role-based access, row-level security, encryption for sensitive data.
· Performance Optimization: Indexes, efficient queries to handle large datasets.
We'll build this step-by-step, emphasizing depth:
· Stored procedures as "API endpoints" for web calls (e.g., via ADO.NET or Entity Framework).
· UDFs for reusable calculations.
· Triggers for automatic validation/auditing.
· Transactions for safe operations.
· Security to protect data.
· Advanced T-SQL for sophisticated insights.
This project assumes the web app connects via connection strings and executes procs/functions. For example, in C#:
using (SqlConnection conn = new SqlConnection("your_connection_string"))
{
    conn.Open();
    using (SqlCommand cmd = new SqlCommand("usp_GetSalesByCustomer", conn))
    {
        cmd.CommandType = CommandType.StoredProcedure;
        cmd.Parameters.AddWithValue("@CustomerID", 123);
        using (SqlDataReader reader = cmd.ExecuteReader())
        {
            // Process results
        }
    }
}
[bookmark: _Toc207197878]11.2 Setting Up the Environment
To ensure a solid foundation, we'll go beyond basic restoration with scripting, verification, and initial customizations.
Restoring the Database
1. Download AdventureWorks2022.bak from Microsoft's GitHub.
2. Script the restore for repeatability:
RESTORE DATABASE AdventureWorks2022
FROM DISK = 'C:\Backups\AdventureWorks2022.bak'
WITH MOVE 'AdventureWorks2022' TO 'C:\SQLData\AdventureWorks2022.mdf',
MOVE 'AdventureWorks2022_log' TO 'C:\SQLData\AdventureWorks2022_log.ldf',
REPLACE;
3. Verify key tables and add custom extensions (e.g., for auditing):
USE AdventureWorks2022;
GO

-- Verify schema
SELECT * FROM sys.schemas WHERE name IN ('Sales', 'Production', 'HumanResources');

-- Create audit table (integrates with triggers later)
CREATE TABLE dbo.SalesAudit (
    AuditID INT IDENTITY PRIMARY KEY,
    SalesOrderID INT,
    Action NVARCHAR(50),
    ActionDate DATETIME DEFAULT GETDATE(),
    UserName NVARCHAR(128) DEFAULT SUSER_SNAME(),
    OldData NVARCHAR(MAX),
    NewData NVARCHAR(MAX)
);
GO

-- Add temporal support to SalesOrderHeader for history (Chapter 10)
ALTER TABLE Sales.SalesOrderHeader
ADD 
    SysStartTime DATETIME2 GENERATED ALWAYS AS ROW START NOT NULL DEFAULT GETDATE(),
    SysEndTime DATETIME2 GENERATED ALWAYS AS ROW END NOT NULL DEFAULT CONVERT(DATETIME2, '9999-12-31 23:59:59.9999999'),
    PERIOD FOR SYSTEM_TIME (SysStartTime, SysEndTime);

ALTER TABLE Sales.SalesOrderHeader
SET (SYSTEM_VERSIONING = ON (HISTORY_TABLE = Sales.SalesOrderHeaderHistory));
GO
Explanation: This setup script restores the DB, verifies schemas, adds an audit table (for triggers), and enables temporal tables on SalesOrderHeader for tracking order history changes over time. Temporal tables automatically maintain versions, useful for dashboard audits.
Performance Baseline
Create initial indexes for common joins:
CREATE NONCLUSTERED INDEX IX_SalesOrderDetail_ProductID ON Sales.SalesOrderDetail(ProductID);
CREATE NONCLUSTERED INDEX IX_SalesOrderHeader_CustomerID_OrderDate ON Sales.SalesOrderHeader(CustomerID, OrderDate);
Explanation: These indexes (Chapter 7) optimize frequent sales queries, reducing I/O for large datasets.
[bookmark: _Toc207197879]11.3 Basic SQL Queries: Exploring and Manipulating Sales Data
Dive deep into CRUD with examples tied to dashboard use cases, including filtering, aggregation, and basic error handling.
SELECT: Dashboard Metrics
Example: Detailed customer sales summary.
SELECT 
    c.CustomerID,
    p.FirstName + ' ' + p.LastName AS CustomerName,
    st.Name AS Territory,
    COUNT(soh.SalesOrderID) AS OrderCount,
    SUM(soh.TotalDue) AS TotalSales,
    AVG(soh.TotalDue) AS AvgOrderValue
FROM Sales.Customer c
JOIN Person.Person p ON c.PersonID = p.BusinessEntityID
JOIN Sales.SalesOrderHeader soh ON c.CustomerID = soh.CustomerID
JOIN Sales.SalesTerritory st ON soh.TerritoryID = st.TerritoryID
WHERE soh.OrderDate BETWEEN '2022-01-01' AND '2022-12-31'
GROUP BY c.CustomerID, p.FirstName, p.LastName, st.Name
HAVING SUM(soh.TotalDue) > 10000
ORDER BY TotalSales DESC;
Explanation: Aggregates orders per customer (Chapter 2), filters by date, groups with HAVING for high-value customers. Useful for dashboard charts.
INSERT: Adding a New Order
Example: Insert with validation.
BEGIN TRY
    INSERT INTO Sales.SalesOrderHeader (CustomerID, OrderDate, DueDate, ShipDate, Status, SubTotal, TaxAmt, Freight, TotalDue, TerritoryID, BillToAddressID, ShipToAddressID)
    VALUES (1, GETDATE(), DATEADD(DAY, 7, GETDATE()), DATEADD(DAY, 5, GETDATE()), 5, 150.00, 12.00, 15.00, 177.00, 1, 1, 1);
    
    DECLARE @NewOrderID INT = SCOPE_IDENTITY();
    
    INSERT INTO Sales.SalesOrderDetail (SalesOrderID, ProductID, OrderQty, UnitPrice, UnitPriceDiscount, LineTotal)
    VALUES (@NewOrderID, 707, 2, 75.00, 0.00, 150.00);
END TRY
BEGIN CATCH
    SELECT ERROR_MESSAGE();
END CATCH;
Explanation: Adds header and detail (Chapter 2), uses SCOPE_IDENTITY() for ID retrieval. Integrates basic error handling (Chapter 8).
UPDATE: Modifying an Order
Example: Update status with check.
UPDATE Sales.SalesOrderHeader
SET Status = 5, -- Shipped
    ModifiedDate = GETDATE()
WHERE SalesOrderID = 43659
AND Status = 2; -- In process
Explanation: Conditional update to prevent invalid changes.
DELETE: Removing a Detail Line
Example: Delete with transaction.
BEGIN TRANSACTION;
BEGIN TRY
    DELETE FROM Sales.SalesOrderDetail
    WHERE SalesOrderID = 43659 AND ProductID = 707;
    COMMIT;
END TRY
BEGIN CATCH
    ROLLBACK;
    SELECT ERROR_MESSAGE();
END CATCH;
Explanation: Ensures atomicity (Chapter 8).
11.4 Joins and Subqueries: Complex Dashboard Reports
Expand with multi-table joins and correlated subqueries for in-depth analysis.
Join Example: Product Sales with Inventory
SELECT 
    p.ProductID,
    p.Name,
    SUM(sod.OrderQty) AS TotalQuantitySold,
    AVG(sod.UnitPrice) AS AvgPrice,
    (SELECT SUM(Quantity) FROM Production.ProductInventory pi WHERE pi.ProductID = p.ProductID) AS CurrentInventory
FROM Production.Product p
INNER JOIN Sales.SalesOrderDetail sod ON p.ProductID = sod.ProductID
INNER JOIN Sales.SalesOrderHeader soh ON sod.SalesOrderID = soh.SalesOrderID
WHERE soh.OrderDate >= '2022-01-01'
GROUP BY p.ProductID, p.Name
HAVING SUM(sod.OrderQty) > 100
ORDER BY TotalQuantitySold DESC;
Explanation: Joins three tables, uses subquery for inventory (Chapter 3). Filters high-volume products for dashboard stock alerts.
Subquery Example: Customers with Above-Average Orders
SELECT 
    c.CustomerID,
    p.FirstName + ' ' + p.LastName AS CustomerName,
    (SELECT COUNT(*) FROM Sales.SalesOrderHeader WHERE CustomerID = c.CustomerID) AS OrderCount
FROM Sales.Customer c
JOIN Person.Person p ON c.PersonID = p.BusinessEntityID
WHERE (SELECT AVG(TotalDue) FROM Sales.SalesOrderHeader WHERE CustomerID = c.CustomerID) > 
      (SELECT AVG(TotalDue) FROM Sales.SalesOrderHeader)
ORDER BY OrderCount DESC;
Explanation: Correlated subqueries for counts and averages (Chapter 3), identifying loyal customers.
[bookmark: _Toc207197880]11.5 Stored Procedures: Web Interface Endpoints
Create procs as callable endpoints for web CRUD and reports, with params, transactions, and error handling.
Reporting Proc: Sales Summary
CREATE PROCEDURE usp_GetSalesSummary
    @TerritoryID INT = NULL,
    @StartDate DATE = NULL,
    @EndDate DATE = NULL
AS
BEGIN
    SET NOCOUNT ON;
    BEGIN TRY
        SELECT 
            st.Name AS Territory,
            SUM(soh.TotalDue) AS TotalSales,
            COUNT(soh.SalesOrderID) AS OrderCount,
            AVG(soh.TotalDue) AS AvgOrderValue
        FROM Sales.SalesOrderHeader soh
        JOIN Sales.SalesTerritory st ON soh.TerritoryID = st.TerritoryID
        WHERE (@TerritoryID IS NULL OR soh.TerritoryID = @TerritoryID)
          AND (@StartDate IS NULL OR soh.OrderDate >= @StartDate)
          AND (@EndDate IS NULL OR soh.OrderDate <= @EndDate)
        GROUP BY st.Name
        ORDER BY TotalSales DESC;
    END TRY
    BEGIN CATCH
        THROW;
    END CATCH;
END;
GO
Execute:
EXEC usp_GetSalesSummary @StartDate = '2022-01-01', @EndDate = '2022-12-31';
Explanation: Flexible filtering, aggregates for dashboard KPIs (Chapter 4). Web app can call this for charts.
CRUD Proc: Add Sales Order
CREATE PROCEDURE usp_AddSalesOrder
    @CustomerID INT,
    @TerritoryID INT,
    @SubTotal DECIMAL(19,4),
    @TaxAmt DECIMAL(19,4),
    @Freight DECIMAL(19,4),
    @ProductID INT,
    @OrderQty INT,
    @UnitPrice DECIMAL(19,4),
    @NewOrderID INT OUTPUT
AS
BEGIN
    SET NOCOUNT ON;
    BEGIN TRANSACTION;
    BEGIN TRY
        -- Insert header
        INSERT INTO Sales.SalesOrderHeader (CustomerID, TerritoryID, OrderDate, DueDate, ShipDate, Status, SubTotal, TaxAmt, Freight, TotalDue, BillToAddressID, ShipToAddressID)
        VALUES (@CustomerID, @TerritoryID, GETDATE(), DATEADD(DAY, 7, GETDATE()), DATEADD(DAY, 5, GETDATE()), 5, @SubTotal, @TaxAmt, @Freight, @SubTotal + @TaxAmt + @Freight, 1, 1);
        
        SET @NewOrderID = SCOPE_IDENTITY();
        
        -- Insert detail
        INSERT INTO Sales.SalesOrderDetail (SalesOrderID, ProductID, OrderQty, UnitPrice, UnitPriceDiscount, LineTotal)
        VALUES (@NewOrderID, @ProductID, @OrderQty, @UnitPrice, 0.00, @OrderQty * @UnitPrice);
        
        COMMIT TRANSACTION;
    END TRY
    BEGIN CATCH
        IF @@TRANCOUNT > 0 ROLLBACK TRANSACTION;
        THROW;
    END CATCH;
END;
GO
Explanation: Atomic insert for header/detail, outputs ID for web confirmation (Chapters 4, 8).
Similar procs for Update/Delete, with validation.
[bookmark: _Toc207197881]11.6 User-Defined Functions: Custom Calculations
UDFs for metrics, integrated into procs/queries.
Scalar UDF: Profit Margin
CREATE FUNCTION dbo.fn_ProductProfitMargin (@ProductID INT)
RETURNS DECIMAL(5,2)
AS
BEGIN
    DECLARE @ListPrice DECIMAL(19,4), @StandardCost DECIMAL(19,4);
    SELECT @ListPrice = ListPrice, @StandardCost = StandardCost
    FROM Production.Product WHERE ProductID = @ProductID;
    RETURN IIF(@ListPrice = 0, 0, ((@ListPrice - @StandardCost) / @ListPrice) * 100);
END;
GO
Use:
SELECT p.ProductID, p.Name, dbo.fn_ProductProfitMargin(p.ProductID) AS Margin
FROM Production.Product p;
Explanation: Handles zero division (Chapter 5).
Table-Valued UDF: Customer Orders
CREATE FUNCTION dbo.fn_GetCustomerOrders (@CustomerID INT)
RETURNS TABLE
AS
RETURN
    SELECT soh.SalesOrderID, soh.OrderDate, SUM(sod.LineTotal) AS Total
    FROM Sales.SalesOrderHeader soh
    JOIN Sales.SalesOrderDetail sod ON soh.SalesOrderID = sod.SalesOrderID
    WHERE soh.CustomerID = @CustomerID
    GROUP BY soh.SalesOrderID, soh.OrderDate;
GO
Use in proc:
SELECT * FROM dbo.fn_GetCustomerOrders(1);
Explanation: Returns table for web order history (Chapter 5).
[bookmark: _Toc207197882]11.7 Triggers: Data Integrity and Auditing
Multiple triggers for validation and logging.
AFTER INSERT/UPDATE Trigger: Validate Inventory
CREATE TRIGGER trg_ValidateInventoryOnOrder
ON Sales.SalesOrderDetail
AFTER INSERT, UPDATE
AS
BEGIN
    IF EXISTS (
        SELECT 1
        FROM inserted i
        JOIN Production.ProductInventory pi ON i.ProductID = pi.ProductID
        WHERE pi.Quantity < i.OrderQty
    )
    BEGIN
        RAISERROR ('Insufficient inventory for product.', 16, 1);
        ROLLBACK TRANSACTION;
    END;
    
    INSERT INTO dbo.SalesAudit (SalesOrderID, Action, OldData, NewData)
    SELECT i.SalesOrderID, 'ORDER_DETAIL_CHANGE', (SELECT * FROM deleted FOR XML RAW), (SELECT * FROM inserted FOR XML RAW)
    FROM inserted i;
END;
GO
Explanation: Checks stock, logs changes (Chapter 6).
DDL Trigger: Audit Schema Changes
CREATE TRIGGER trg_AuditSchemaChanges
ON DATABASE
FOR CREATE_TABLE, ALTER_TABLE, DROP_TABLE
AS
BEGIN
    INSERT INTO dbo.SalesAudit (Action, OldData)
    VALUES ('SCHEMA_CHANGE', EVENTDATA().value('(/EVENT_INSTANCE/TSQLCommand/CommandText)[1]', 'NVARCHAR(MAX)'));
END;
GO
Explanation: Logs DDL for compliance (Chapter 6).
[bookmark: _Toc207197883]11.8 Indexes and Performance Optimization
Analyze and optimize with DMVs and plans.
Missing Index Suggestion
SELECT * FROM sys.dm_db_missing_index_details WHERE database_id = DB_ID();
Create Indexes Based on Analysis
Example: For order date queries.
CREATE NONCLUSTERED INDEX IX_SalesOrderHeader_OrderDate
ON Sales.SalesOrderHeader(OrderDate)
INCLUDE (TotalDue, CustomerID);
Before/After Test:
SET STATISTICS IO ON;
-- Run query from 11.3
SET STATISTICS IO OFF;
Explanation: Shows I/O reduction (Chapter 7). For large AdventureWorks data, this cuts logical reads significantly.
11.9 Transactions and Error Handling: Safe Web Operations
Embed in procs (as in 11.5), with isolation.
Example: Set isolation in proc.
ALTER PROCEDURE usp_AddSalesOrder
-- Params...
AS
BEGIN
    SET TRANSACTION ISOLATION LEVEL READ COMMITTED;
    -- Rest of code
END;
Explanation: Prevents dirty reads in concurrent web requests (Chapter 8).
11.10 Security: Securing Web Access
Roles, RLS, encryption.
Role Creation
CREATE ROLE DashboardUser;
GRANT EXECUTE ON usp_GetSalesSummary TO DashboardUser;
GRANT EXECUTE ON usp_AddSalesOrder TO DashboardUser;
-- Add web app user to role
RLS: Territory-Based
CREATE FUNCTION fn_TerritoryAccess (@TerritoryID INT)
RETURNS TABLE WITH SCHEMABINDING
AS RETURN SELECT 1 WHERE @TerritoryID = CAST(SESSION_CONTEXT(N'TerritoryID') AS INT);

CREATE SECURITY POLICY TerritoryFilter
ADD FILTER PREDICATE dbo.fn_TerritoryAccess(TerritoryID) ON Sales.SalesOrderHeader
WITH (STATE = ON);
In web app, set SESSION_CONTEXT post-login.
Encryption: Sensitive Data
CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'StrongPass!';
CREATE CERTIFICATE SalesCert WITH SUBJECT = 'Sales Encryption';
CREATE SYMMETRIC KEY SalesKey WITH ALGORITHM = AES_256 ENCRYPTION BY CERTIFICATE SalesCert;

ALTER TABLE Sales.Customer ADD EncryptedEmail VARBINARY(MAX);

OPEN SYMMETRIC KEY SalesKey DECRYPTION BY CERTIFICATE SalesCert;
UPDATE Sales.Customer
SET EncryptedEmail = ENCRYPTBYKEY(KEY_GUID('SalesKey'), EmailAddress)
FROM Person.EmailAddress ea WHERE Customer.PersonID = ea.BusinessEntityID;
CLOSE SYMMETRIC KEY SalesKey;
Explanation: Encrypts emails (Chapter 9).
[bookmark: _Toc207197884]11.11 Advanced Topics: Sophisticated Analytics
CTEs, windows, temporal, JSON.
CTE with Window: Sales Trends
WITH MonthlySales AS (
    SELECT 
        YEAR(soh.OrderDate) * 100 + MONTH(soh.OrderDate) AS MonthKey,
        SUM(soh.TotalDue) AS MonthlyTotal
    FROM Sales.SalesOrderHeader soh
    GROUP BY YEAR(soh.OrderDate) * 100 + MONTH(soh.OrderDate)
)
SELECT 
    MonthKey,
    MonthlyTotal,
    AVG(MonthlyTotal) OVER (ORDER BY MonthKey ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS MovingAvg
FROM MonthlySales;
Explanation: Moving average for trends (Chapter 10).
Temporal Query: Historical Orders
SELECT SalesOrderID, TotalDue, SysStartTime, SysEndTime
FROM Sales.SalesOrderHeader FOR SYSTEM_TIME ALL
WHERE SalesOrderID = 43659
ORDER BY SysStartTime;
Explanation: Views changes over time.
JSON: Export Metrics
SELECT 
    CustomerID,
    (SELECT soh.SalesOrderID, soh.TotalDue FOR JSON PATH) AS Orders
FROM Sales.Customer c
JOIN Sales.SalesOrderHeader soh ON c.CustomerID = soh.CustomerID
FOR JSON PATH;
Explanation: JSON output for web API.
[bookmark: _Toc207197885]11.12 Conclusion and Web Integration
This expanded project demonstrates a full backend, callable from web apps via stored procs/UDFs. For integration, use Entity Framework to map procs to methods. Next steps: Add SSIS for ETL, Power BI for visuals, or Azure migration.

2 | Page

image1.jpeg
QCOMPB"VDB




